
1/2

September 7, 2012

The case of the asynchronous copy and delete
devblogs.microsoft.com/oldnewthing/20120907-00

Raymond Chen

A customer reported some strange behavior in the
 CopyFile and DeleteFile
functions.

They were able to reduce the problem to a simple test program,
which went like this

(pseudocode):

// assume "a" is a large file, say, 1MB.

while (true)

{

 // Try twice to copy the file

 if (!CopyFile("a", "b", FALSE)) {

 Sleep(1000);

 if (!CopyFile("a", "b", FALSE)) {

 fatalerror

 }

 }

 // Try twice to delete the file

 if (!DeleteFile("b")) {

 Sleep(1000);

 if (!DeleteFile("b")) {

 fatalerror

 }

 }

}

When they ran the program, they found that sometimes the copy
failed on the first try with

error 5
(ERROR_ACCESS_DENIED)
but if they waited a second and tried again, it succeeded.

Similarly, sometimes the delete failed on the first try,
but succeeded on the second try if you

waited a bit.

What’s going on here?
It looks like the
 CopyFile is returning before the file copy
is

complete, causing the
 DeleteFile
to fail because the copy is still in progress.
Conversely, it

looks like the
 DeleteFile returns before the file is deleted,
causing the
 CopyFile to fail

because the destination exists.

The operations
 CopyFile and
 DeleteFile are synchronous.
However, the NT model for

file deletion is that a file is
deleted when the last open handle is closed.¹
If DeleteFile

returns and the file still exists,
then it means that somebody else still has an open handle to

https://devblogs.microsoft.com/oldnewthing/20120907-00/?p=6663

2/2

the file.

So who has the open handle?
The file was freshly created, so there can’t be any pre-existing

handles to the file,
and we never open it between the copy and the delete.

My psychic powers said,
“The offending component is your anti-virus software.”

I can think of two types of software that goes around snooping
on recently-created files.
One

of them is an indexing tool,
but those tend not to be very aggressive about accessing files
the

moment they are created.
They tend to wait until the computer is idle to do their work.
Anti-

virus software, however, runs in real-time mode,
where they check every file as it is created.

And that’s more likely to be the software that snuck in and
opened the file after the copy

completes so it can perform a
scan on it,
and that open is the extra handle that is preventing

the deletion
from completing.

But wait, aren’t anti-virus software supposed to be using
oplocks so that they can close their

handle and get out of the way
if somebody wants to delete the file?

Well, um, yes, but “what they should do” and “what they actually do”
are often not the same.

We never did hear back from the customer whether the guess was
correct,
which could mean

one of various things:

1. They confirmed the diagnosis and didn’t feel the need to
reply.

2. They determined that the diagnosis was incorrect but didn’t
bother coming back for

more help,
because “those Windows guys don’t know what they’re talking about.”

3. They didn’t test the theory at all, so had nothing to report.

We may never know what the answer is.

Note

¹Every so often, the NT file system folks dream of changing
the deletion model to be more

Unix-like, but then they wonder if
that would end up breaking more things than it fixes.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

