
1/2

September 6, 2012

You can't rule out a total breakdown of normal
functioning, because a total breakdown of normal
functioning could manifest itself as anything

devblogs.microsoft.com/oldnewthing/20120906-00

Raymond Chen

A customer was attempting to study a problem that their analysis traced back to the malloc

function returning NULL .

Is it a valid conclusion that there is no heap corruption?

While heap corruption may not be the avenue of investigation you’d first pursue, you can’t

rule it out. In the presence of a total breakdown of normal functioning, anything can happen,

including appearing to be some other type of failure entirely.
For example, the heap

corruption might have corrupted the bookkeeping data in such a way as to make the heap

behave as if it were a fixed-sized heap, say by corrupting the location where the heap

manager remembered the dwMaximumSize parameter and changing it from zero to nonzero.

Now, the next time the heap manager wants to expand the heap, it sees that the heap is no

longer expandable and returns NULL .
Or maybe the heap corruption tricked the heap

manager into thinking that it was operating under low resource simulation, so it returned

NULL even though there was plenty of memory available.
Remember, once you’ve entered

the realm of undefined behavior, anything is possible. Heck, one possible response to heap

corruption is the installation of a rootkit.
After all, that’s how more advanced classes of

malware work. They exploit a vulnerability to nudge a process into a subtle failure mode, and

then push the failure mode over the edge into a breakdown, and then exploit the breakdown

to get themselves installed onto your system, and then cover their tracks so you don’t realize

you’ve been pwned.
Maybe the heap was corrupted in a way that cause a rootkit to become

installed, and the rootkit patched the malloc function so it returned NULL .
Like I said

earlier, the possibility of heap corruption is probably not the avenue I would investigate first.

But you can’t rule it out either.

Bonus chatter: Since heap corruption can in principle lead to anything, any bug that

results in heap corruption automatically gets a default classification of Arbitrary Code

Execution, and if the heap corruption can be triggered via the network, it gets an automatic

default classification of Remote Code Execution (RCE). Even if the likelihood of transforming

https://devblogs.microsoft.com/oldnewthing/20120906-00/?p=6673
http://blogs.msdn.com/b/oldnewthing/archive/2009/11/13/9921676.aspx
http://technet.microsoft.com/en-us/library/bb457063.aspx

2/2

the heap corruption into remote code execution is exceedingly low, you still have to classify it

as RCE until you can rule out all possibility of code execution. (And it is extremely rare that

one can successfully prove that a heap overflow is not exploitable under any possible

conditions.)

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

