
1/2

August 31, 2012

Adventures in undefined behavior: The premature
downcast

devblogs.microsoft.com/oldnewthing/20120831-00

Raymond Chen

A customer encountered the following problem:

class Shape

{

public:

 virtual bool Is2D() { return false; }

};
class Shape2D : public Shape

{

public:

 virtual bool Is2D() { return true; }

};
Shape *FindShape(Cookie cookie);

void BuyPaint(Cookie cookie)

{

 Shape2D *shape = static_cast<Shape2D *>(FindShape(cookie));

 if (shape->Is2D()) {

 .. do all sorts of stuff ...

 }

}

The BuyPaint function converts the cookie back
to a Shape object, and then checks if the

object
is a Shape2D object by calling Is2D .
If so, then it does some more stuff to figure out

what type of paint
to buy.

(Note to nitpickers:
The actual scenario was not like this, but I presented it this way
to

illustrate the point.
If you say “You should’ve
used RTTI” or “You should’ve had a BuyPaint

method on the Shape class”,
then you’re missing the point.)

The programmers figured they’d save some typing by casting the
result of FindShape to a

Shape2D
right away,
because after all, since Is2D is a virtual
method, it will call the right

version of the function,
either Shape::Is2D
or Shape2D::Is2D ,
depending on the actual

type of the underlying object.

https://devblogs.microsoft.com/oldnewthing/20120831-00/?p=6713

2/2

But when compiler optimizations were turned on, they discovered
that the call to Is2D was

optimized away,
and the BuyPaint function merely assumed
that it was always operating

on a Shape2D object.
It then ended up trying to buy paint even for one-dimensional objects

like points and lines.

Compiler optimization bug?
Nope.
Code bug due to reliance on undefined behavior.

The C++ language says (9.3.1)
“If a nonstatic member function of a class X
is called for an

object that is not of type X ,
or of a type derived from X , the behavior is undefined.”
In

other words,
if you are invoking a method on an object of type X ,
then you are promising

that it really is of type X ,
or a class derived from it.

The code above violates this rule,
because it is invoking the Is2D method
on a Shape2D* ,

which therefore comes with the promise
“This really is a Shape2D object
(or something

derived from it).”
But this is a promise the code cannot deliver on, because the
object

returned by FindShape might be a simple
 Shape .

The compiler ran with the (false) promise and said,
“Well, since you are guaranteeing that

the object is at least
a Shape2D ,
and since I have studied your code and determined that no

classes which further derive from Shape2D override
the Is2D method,
I have therefore

proved that the final overrider is
 Shape2D::Is2D and can therefore
inline that method.”

Result: The compiler inlines Shape2D::Is2D ,
which returns true , so the “if” test can be

optimized out.
The compiler can assume that BuyPaint is always
called with cookies that

represent two-dimensional objects.

The fix is to do the annoying typing that the original authors
were trying to avoid:

void BuyPaint(Cookie cookie)

{

 Shape *shape = FindShape(cookie);

 if (shape->Is2D()) {

 Shape2D *shape2d = static_cast<Shape2D *>(shape);

 .. do all sorts of stuff (with shape2d) ...

 }

}

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

