
1/1

August 30, 2012

I'm not calling a virtual function from my constructor or
destructor, but I'm still getting a __purecall error

devblogs.microsoft.com/oldnewthing/20120830-00

Raymond Chen

Some time ago, I described what __purecall is for: It’s to detect the cases where you call a

virtual method with no implementation (a so-called pure virtual method). This can happen

during object constructor or destruction, since those are times when you can validly have a

partially-implemented object.
Well, there’s another case this can happen: If the object has

already been destructed.
If you call a method on an object that has already been destructed,

the behavior is undefined. In practice, what happens is that the method runs on whatever

leftover values are in memory where the object used to be. Depending on how lucky or

unlucky you are, this may resemble the actual object closely enough that the method doesn’t

notice, or at least doesn’t notice for a while, or maybe it can’t even get off the ground.

The __purecall error is a case where it can’t even get off the ground. The leftover object

still has a vtable, namely the vtable of the base class, the one that has __purecall entries

for all the pure virtual functions. (It still has that vtable because that’s the object’s last

identity before finally going invalid.) And the method you tried to call is a virtual method that

is pure in the base class. Not only are you calling a pure virtual function after destruction has

begun, you’re calling it after destruction is complete.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20120830-00/?p=6723
http://blogs.msdn.com/b/oldnewthing/archive/2004/04/28/122037.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

