
1/4

August 20, 2012

How do I customize how my application windows are
grouped in the Taskbar?

devblogs.microsoft.com/oldnewthing/20120820-00

Raymond Chen

Benjamin Smedberg wants to know
how to customize the icon used in the Taskbar
for

applications that are grouped,
when the application is a runtime for multiple applications.

(This is the other scenario I hinted at
last time.)

Actually, customizing the icon is only part of what you want to happen
when your application

is a runtime.
In that case, you really want each inner application to be exposed
to the user as

an entirely separate application.
In other words,
if your application is hosting Product A and

Product B,
you want the windows for Product A and
Product B to group separately,
have

separate icons,
maintain separate jump lists,
all that stuff.
Because from the user’s point of

view, they are separate programs.
It just happens that under the covers, they’re all being

driven
by a single EXE.

In Windows, the concept of an application is captured in
something called an Application

User Model ID,
or AppID for short.
For backward compatibility, if your application does not

provide
an explicit AppID,
the shell will autogenerate one based on your EXE name.

Therefore,
the starting point for AppIDs is that an AppID maps to an EXE.
But once you start

customizing your AppID, you can play with
this default correspondence.

All the information in this article came from the article
Application User Model IDs

(AppUserModelIDs) in MSDN.

Okay, so suppose your application is really a runtime for
other applications.
What you need

to do is assign a different AppID to each of
the applications you are hosting.
The mechanism

for this is up to you.
Your applications might explicitly provide a unique ID,
or you may be

able to infer one.
For example, if you are Internet Explorer and your “applications”
are

pinned Web sites,
you can use the URL of the site being pinned as the unique ID.

You then get to take your unique IDs and create AppIDs for them.
The format of an AppID is

CompanyName.ProductName.SubProduct.VersionInformation

https://devblogs.microsoft.com/oldnewthing/20120820-00/?p=6813
http://blogs.msdn.com/b/oldnewthing/archive/2010/07/20/10040074.aspx#10040417
http://blogs.msdn.com/b/oldnewthing/archive/2012/08/17/10340743.aspx
http://msdn.microsoft.com/en-us/library/dd378459(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/gg131029(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/dd378459(v=VS.85).aspx#how

2/4

where the SubProduct is optional,
and the VersionInformation is present only if you want

different versions of your app to be treated as distinct.
(If you want an upgraded version to be

a replacement for the old
version, then omit the VersionInformation so that the old and
new

versions use the same AppID.)

Note that you have to be careful how you auto-generate your AppIDs,
since the resulting

AppID needs to be legal.
For example, you cannot just take a URL and use it as the Sub-

Product
of an AppID.
URLs contain embedded periods, which violates the overall format,

and they can be longer than 128 characters and can contain spaces,
both of which are also

called out in the documentation as prohibited.
Internet Explorer addresses this problem by

using a hash of the URL as
its SubProduct rather than the full URL.

You then assign this AppID to every window associated with
the “application”.
You can do

this for an entire process by
calling
 SetCurrentProcessExplicitAppUserModelID ,
or you

can do it on a
window-by-window basis
by setting the
 PKEY_AppUserModel_ID property.

Okay, let’s write a program that shows how a runtime for other applications
can use AppIDs

to control its treatment in the taskbar.
Of course,
our sample won’t actually be a runtime for

anything;
the “applications” that it hosts will simply be icons.

Start with the
scratch program
and make these changes:

http://blogs.msdn.com/b/oldnewthing/archive/2011/06/01/10170113.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2003/07/23/54576.aspx

3/4

#include <shellapi.h>

#include <shlobj.h>

#include <strsafe.h>

#define HOSTAPPID L"Contoso.Host"

void SetProcessAppId(LPCWSTR pszTarget)

{

 if (pszTarget[0]) {

 WCHAR szAppId[256];

 DWORD dwHash = 0;

 HashData((BYTE*)pszTarget, wcslen(pszTarget) * sizeof(WCHAR),

 (BYTE*)&dwHash, sizeof(dwHash));

 StringCchPrintfW(szAppId, ARRAYSIZE(szAppId),

 L"%s.hosted-%08x", HOSTAPPID, dwHash);

 SetCurrentProcessExplicitAppUserModelID(szAppId);

 } else {

 StringCchPrintfW(szAppId, ARRAYSIZE(szAppId),

 L"%s.main", HOSTAPPID);

 }

}

int WINAPI wWinMain(HINSTANCE hinst, HINSTANCE hinstPrev,

 LPWSTR lpCmdLine, int nShowCmd)

{

 SetProcessAppId(lpCmdLine);

 ...

 ShowWindow(hwnd, SW_NORMAL);

 SetWindowText(hwnd, lpCmdLine);

 if (lpCmdLine[0]) {

 WCHAR szIcon[256];

 StringCchCopyW(szIcon, ARRAYSIZE(szIcon), ptszCmdLine);

 int iIcon = PathParseIconLocation(szIcon);

 if (iIcon == -1) iIcon = 0;

 HICON hico = ExtractIcon(hinst, szIcon, iIcon);

 SendMessage(hwnd, WM_SETICON, ICON_BIG, (LPARAM)hico);

 }

 ...

}

Our simple host program just hosts an icon.
The path to the icon is passed on the command

line in the form
“path,id”,
and for good measure, we put the icon path in the caption so you

can
see how it groups.

The real work happens in the
 SetProcessAppId function.
If there is no command line, then

we are running in standalone mode
and set our SubProduct to main .
If we have a command

line, then we hash it and use the hash to build
our SubProduct.
I’m just using a four-byte

hash with a simple has function;
depending on how paranoid you are, you could use some

other hash
function, but make sure you can get the resulting AppID to fit
into 128 characters.

(This means that hex-encoded SHA512 is too big.)

http://blogs.msdn.com/b/oldnewthing/archive/2005/05/26/422076.aspx

4/4

Once we figure out what our AppID is, we set it for the entire
process by calling

SetCurrentProcessExplicitAppUserModelID .

Okay, let’s take this program out for a spin.
You can run it with the command lines

scratch %windir%\explorer.exe,0

scratch %windir%\explorer.exe,0

scratch %windir%\explorer.exe,1

scratch %windir%\explorer.exe,1

to see four copies of the program,
two with one icon and two with another.
Observe that

when they group in the taskbar,
the icon for the group is preserved,
and that the two sets of

programs group separately.

Note also that if you create shortcuts to your host program
with a command line,
you need to

set the AppID in your shortcut, too.
(Otherwise the shell won’t know what the AppID of the

resulting program will be, since you are setting it at runtime.)

Note also that we did not need to
register the application as a host process
because we

explicitly set an AppID in our application
and in our shortcuts.
(Or at least, we said that we

would.
I didn’t actually do it.)

Bonus reading:
Developing for the Windows 7 Taskbar — Application ID.

Raymond Chen

Follow

http://msdn.microsoft.com/en-us/library/dd378459(v=VS.85).aspx#where
http://msdn.microsoft.com/en-us/library/dd378459(v=VS.85).aspx#host
http://windowsteamblog.com/windows/b/developers/archive/2009/06/18/developing-for-the-windows-7-taskbar-application-id.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

