
1/2

August 10, 2012

How did real-mode Windows implement its LRU
algorithm without hardware assistance?

devblogs.microsoft.com/oldnewthing/20120810-00

Raymond Chen

I noted some time ago that real-mode Windows had to do all
its memory management

without any hardware assistance.
And yet, along the way, they managed to implement an

LRU-based
discard algorithm.
Gabe is really interested in how that was done.

As we saw a few months ago,
inter-segment calls were redirected through a little stub which

either jumped directly to the target (if it was in memory)
or loaded the target
(possibly

discarding other memory to make room)
before jumping to it.
And we saw that the

executable format had
 INT 3Fh instructions baked into it
so that the Entry Table could be

loaded directly into memory
for execution.

As it happens, Windows didn’t take advantage of that feature,
because it wanted to do more.

When it came time to load the Entry Table,
the loader did a little rewriting, converting each

 db flags

 INT 3Fh

 db entry_segment

 dw entry_offset

sequence into

 db flags

 sar byte ptr cs:[xxx], 1

 INT 3Fh

 db entry_segment

 dw entry_offset

where the xxx refers to a table of bytes
in the Entry Table preallocated for this purpose,

initialized to 1’s.

What is “this purpose”?

https://devblogs.microsoft.com/oldnewthing/20120810-00/?p=6893
http://blogs.msdn.com/b/oldnewthing/archive/2011/03/16/10141735.aspx#10142501
http://blogs.msdn.com/b/oldnewthing/archive/2012/06/22/10322767.aspx

2/2

Whenever anybody needed the address of an inter-segment
function, instead of return the

address of the int 3Fh ,
the kernel returned the address of the sar instruction.
The sar

instruction stands for shift arithmetic right,
For a byte value, this means to shift the bits

right one place,
but keep the high-order bit the same.

a b c d e f g h

↓

a a b c d e f g

Okay, so what was the effect of sticking this little
 sar instruction at the start of every inter-

segment
call?
Since the values in the table were initialized to 1,
a right arithmetic shift

changed the 1 to 0.
Therefore, each time an inter-segment call was performed,
the

corresponding byte in the table was set to zero.

Hooray, a software-implemented Accessed bit!

Every 250 milliseconds, Windows scanned and reset the Access bits,
using the data to

maintain an LRU-list of all the segments in the
system.
That way, when it was time to discard

some memory,
it could discard the least recently used ones first.

Today, a timer that runs continuously at 250ms would
incur the wrath of the power

management team.
But back in the days of real-mode Windows,
there was no power

management.
Like Chuck Norris, PCs ran at only one power level: Awesome.

I continue to be amazed at how much Windows 1.0 accomplished
with so little.

[Raymond is currently away; this message was pre-recorded.]

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

