
1/4

August 2, 2012

Exiting a batch file without exiting the command shell -
and- batch file subroutines

devblogs.microsoft.com/oldnewthing/20120802-00

Raymond Chen

Prepare your party hats: Batch File Week is almost over.

In your batch file,
you may want to exit batch file processing
(say, you encountered an error

and want to give up),
but if you use the exit command,
that will exit the entire command

processor.
Which is probably not what you intended.

Batch file processing ends when execution reaches
the end of the batch file.
The trick

therefore is to use the goto command
to jump to a label right before the end of the file,
so

that execution “falls off the end”.

@echo off

if "%1"=="" echo You must provide a file name.&goto end

if NOT EXIST "\\server\backup\%USERNAME%\nul" mkdir "\\server\backup\%USERNAME%"

if NOT EXIST "\\server\backup\%USERNAME%\nul" echo Unable to create output
directory.&goto end

copy "%1" "\\server\backup\%USERNAME%"

:end

Here, there are two places where we abandon batch file execution.
One is on an invalid

parameter,
and another is if the output directory couldn’t be created
(or if it isn’t a directory

at all).

The batch command interpreter provides a courtesy label
to simply this technique:
The

special goto target
 goto :eof (with the colon)
jumps to the end of the batch file.
It’s as if

every batch file had a hidden goto label
called :eof on the very last line.

The goto :eof trick becomes even more handy
when you start playing with batch file

subroutines.
Okay, let's back up: Batch file subroutines?

By using the call command,
a batch file can invoke another batch file and regain
control

after that other batch file returns.
(If you forget the call , then control
does not return. In

other words, the default mode
for batch file invocation is chain.)
In other words, the call

https://devblogs.microsoft.com/oldnewthing/20120802-00/?p=6973
http://blogs.msdn.com/b/oldnewthing/archive/2003/10/22/55388.aspx

2/4

command
lets you invoke another batch file as a subroutine.
The command line parameters

are received by the
other batch file as the usual numbered parameters
 %1 , %2 , etc.

It's annoying having to put every subroutine inside
its own batch file,
so the command

interpreter folks added a way to
call a subroutine inside the same batch file.
The syntax for

this is
 call :label parameter parameter parameter .
This is logically equivalent to a

batch file recursively
calling itself, except that execution begins at the
specified label instead

of the first line of the file.
(It's as if a secret goto label were added
to the top of the file.)

And since it is a batch file, execution of the called
subroutine ends when execution falls off

the end of the file.
And that's where the special goto target
comes in handy.
At the end of

your subroutine,
you can jump to the end of the batch file (so that
execution falls off the end)

by doing a
 goto :eof .

In other words,
 goto :eof is the return statement
for batch file subroutines.

Let's take it for a spin:

@echo off

call :subroutine a b c

call :subroutine d e f

goto :eof

:subroutine

echo My parameters are 1=%1, 2=%2, 3=%3

goto :eof

That final goto :eof is redundant,
but it's probably a good habit to get into,
like putting a

break; at the end of
your last case .

The subroutine technique is handy even if you don't
really care about the subroutine,
because

stashing the arguments into the %n
parameters lets you use the
tilde operators
to process

the inbound parameter.

@echo off

call :printfilesize "C:\Program Files\Windows NT\Accessories\wordpad.exe"

goto :eof

:printfilesize

echo The size of %1 is %~z1

goto :eof

Okay, this isn't actually much of a handy trick because you can also
do it without a

subroutine:

@echo off

for %%i ^

in ("C:\Program Files\Windows NT\Accessories\wordpad.exe") ^

do echo The size of %%i is %%~zi

http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/percent.mspx

3/4

On the other hand, the subroutine trick combines well with the
 FOR command,
since it lets

you put complex content in the loop body
without having to mess with
delayed expansion:

@echo off

setlocal

set DISKSIZE=1474560

set CLUSTER=512

set DISKS=1

set TOTAL=0

for %%i in (*) do call :onefile "%%i"

set /a DISKS=DISKS+1

echo Total disks required: %DISKS%

endlocal

goto :eof

:onefile

set /a SIZE=((%~z1 + CLUSTER - 1) / CLUSTER) * CLUSTER

if %SIZE% GEQ %DISKSIZE% (

 echo File %1 does not fit on a floppy - skipped

 goto :eof

)

set /a TOTAL=TOTAL+SIZE

if %TOTAL% GEQ %DISKSIZE% (

 echo ---- need another disk

 set /a DISKS=DISKS+1

 set /a TOTAL=SIZE

)

echo copy %1

goto :eof

This program calculates the number of floppy disks it would take
to copy the contents of the

current directory without compression.

The setlocal command takes a snapshot of the
environment for restoration when we

perform the endlocal
at the end.
That will clean up our temporary variables when we're

done.

The first two variables are parameters for the calculation,
namely the disk capacity and the

cluster size.
(We're assuming that the root directory can hold all the files
we may ultimately

copy.
Hey, this is just a demonstration, not a real program.)

The next two variables are our running total of the number of
disks we've used so far,
and

how many bytes we've used on the last disk.

The for command iterates over all the files in the
current directory.
For each one, we call

:onefile with the file name.

The :onefile subroutine does all the real work.
First, it takes the file size %~z1 and

rounds it up
to the nearest cluster.
It then sees if that size is larger than a floppy disk;
if so,

then we're doomed, so we just skip the file.
Otherwise, we add the file to the current disk and

http://blogs.msdn.com/b/oldnewthing/archive/2006/08/23/714650.aspx

4/4

see if it fits.
If not, then we declare the disk full and put the file on a brand
new disk.

After the loop is complete,
we print the number of floppy disks we calculated.

(This algorithm erroneously reports that no files require one disk.
Fixing that is left as an

exercise.)

There's your quick introduction to the secret
 :eof label and batch file subroutines.

[Raymond is currently away; this message was pre-recorded.]

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

