
1/3

July 20, 2012

The format of icon resources
devblogs.microsoft.com/oldnewthing/20120720-00

Raymond Chen

It’s been a long time since my last entry in the continuing
sporadic series on resources

formats.
Today we’ll look at icons.

Recall that an icon file
consists of two parts,
an icon directory
(consisting of an icon directory

header followed by a number of
icon directory entries),
and then the icon images themselves.

When an icon is stored in resources, each of those parts gets its own
resource entry.

The icon directory (the header plus the directory entries)
is stored as a resource of type

RT_GROUP_ICON .
The format of the icon directory in resources is slightly different
from the

format on disk:

typedef struct GRPICONDIR

{

 WORD idReserved;

 WORD idType;

 WORD idCount;

 GRPICONDIRENTRY idEntries[];

} GRPICONDIR;

typedef struct GRPICONDIRENTRY

{

 BYTE bWidth;

 BYTE bHeight;

 BYTE bColorCount;

 BYTE bReserved;

 WORD wPlanes;

 WORD wBitCount;

 DWORD dwBytesInRes;

 WORD nId;

} GRPICONDIRENTRY;

All the members mean the same thing as in the corresponding
 ICONDIR and

IconDirectoryEntry
structures, except for that mysterious nId
(which replaces the

dwImageOffset from the
 IconDirectoryEntry).
To unravel that mystery, we need to

look at where
the rest of the icon file went.

https://devblogs.microsoft.com/oldnewthing/20120720-00/?p=7083
http://blogs.msdn.com/b/oldnewthing/archive/2010/10/18/10077133.aspx

2/3

In the icon file format,
the dwImageOffset represented the location
of the icon bitmap

within the file.
When the icon file is converted to a resource,
each icon bitmap is split off into

its own resource
of type RT_ICON .
The resource compiler auto-assigns the resource IDs,
and

it is those resource IDs that are stored in the
 nId member.

For example, suppose you have an icon file with four
images.
In your resource file you say

42 ICON myicon.ico

The resource compiler breaks the file into five resources:

Resource type Resource Id Contents

RT_GROUP_ICON 42 GRPICONDIR.idCount = 4

GRPICONDIRENTRY[0].nId = 124

GRPICONDIRENTRY[1].nId = 125

GRPICONDIRENTRY[2].nId = 126

GRPICONDIRENTRY[3].nId = 127

RT_ICON 124 Pixels for image 0

RT_ICON 125 Pixels for image 1

RT_ICON 126 Pixels for image 2

RT_ICON 127 Pixels for image 3

Why does Windows break the resources into five pieces instead of just
dumping them all

inside one giant resource?

Recall
how 16-bit Windows managed resources.
Back in 16-bit Windows, a resource was a

handle into a table,
and obtaining the bits of the resource involved allocating memory and

loading it from the disk.
Recall also that 16-bit Windows operated under tight memory

constraints,
so you didn’t want to load anything into memory unless you really
needed it.

Therefore, looking up an icon in 16-bit Windows went like this:

Find the icon group resource, load it, and lock it.

Study it to decide which icon image is best.

Unlock and free the icon group resource since we don’t need
it any more.

Find and load the icon image resource for the one you chose.

Return that handle as the icon handle.

Observe that once we decide which icon image we want,
the only memory consumed is the

memory for that specific image.
We never load the images we don’t need.

Drawing an icon went like this:

http://blogs.msdn.com/b/oldnewthing/archive/2004/02/02/66159.aspx

3/3

Lock the icon handle to get access to the pixels.

Draw the icon.

Unlock the icon handle.

Since icons were usually marked discardable,
they could get evicted from memory if

necessary,
and they would get reloaded the next time you tried to draw them.

Although Win32 does not follow the same memory management model
for resources as 16-

bit Windows,
it preserved the programming model
(find, load, lock)
to make it easier to port

programs from 16-bit Windows to 32-bit Windows.
And in order not to break code which

loaded icons from resources directly
(say, because they wanted to replace the icon selection

algorithm),
the breakdown of an icon file into a directory + images was also preserved.

You now know enough to solve this customer’s problem:

I have an icon in a resource DLL, and I need to pass its raw data
to another component.
However, the number of bytes reported by
 SizeOfResource is only 48 instead of 5KB
which is the amount actually stored in the resource DLL.
I triple-checked the resource DLL and
I’m sure I’m looking at the
right icon resource.

Here is my code:

HRSRC hrsrcIcon = FindResource(hResources,

 MAKEINTRESOURCE(IDI_MY_ICON), RT_GROUP_ICON);

DWORD cbIcon = SizeofResource(hResources, hrsrcIcon);

HGLOBAL hIcon = LoadResource(hResources, hrsrcIcon);

void *lpIcon = LockResource(hIcon);

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

