
1/3

July 19, 2012

Why do some font names begin with an at-sign?
devblogs.microsoft.com/oldnewthing/20120719-00

Raymond Chen

It was a simple question.

For some reason, my font selection dialog ( CFontDialog ) shows a bunch of font names
beginning with the at-sign (@). These fonts don’t work correctly if I use them. Any idea what
they are? (I tried searching the Internet, but search engines don’t seem to let you search for @
so it’s hard to make much headway.)

(And that’s why I wrote “at-sign” in the subject instead of using the @ character.)
Fonts

which begin with an @-sign are vertically-oriented fonts. They are used in languages like

Chinese, Japanese, and (less often) Korean. The idea is that if you want to generate vertical

text, you start with the horizontal version of the font and compose your document, then

switch to the vertical version for printing.

 x x x 

It looks like you have both the SimSun and @SimSun fonts installed, so I can run this

demonstration with the real live font. Just to double-check: 人 ≺ Those two characters should

look roughly the same.

It’s an unusual example, due to the use of Arabic numerals for the year, but you’ll see later

why I chose it.

Start with the following text:

微軟公司成立於1975年。

when it’s time to print, switch to the vertical version of the font.

微軟公司成立於1975年。

Hm, it looks like the Chinese characters got rotated 90° to the left, so they’re all lying on their

side. The result is not really all that readable, but wait, here’s the trick: After the paper comes

out of the printer, rotate the paper right 90°:

https://devblogs.microsoft.com/oldnewthing/20120719-00/?p=7093
http://www.datadynamics.com/forums/101294/ShowPost.aspx


2/3

微軟公司成立於1975年。

微軟公司成立於1975年。

I wasn’t able to detect that your browser supports the @SimSun  font, so I’ll give an example

with fake Chinese characters. Pretend that the shapes and Latin letters are actually Chinese

characters. First, you compose your document with the horizontal font:

▴❦Quo123▴‌̥ 

When it’s time to print, switch to the vertical version of the font.

❥❧℺ᴝᴑ123°

Hm, it looks like the Chinese characters got rotated 90° to the left, so they’re all lying on their

side. The result is not really all that readable, but wait, here’s the trick: After the paper comes

out of the printer, rotate the paper right 90°:

❥❧℺ᴝᴑ123°

▴❦℺ᴝᴑ123▴°

Notice that the vertical version of a font does not simply rotate every character 90°. Non-CJK

characters typically remain in their original orientation (which means that when you turn the

paper, they will come out rotated). And some CJK characters change form between

horizontal and vertical variants, like the period in the example above, so it’s not a simple rule

like “rotate all CJK characters and leave non-CJK characters alone.”
This is basically a hack

to get rudimentary vertical font support in software that doesn’t support vertical text

natively. (Web browsers support vertical text natively with the proposed writing-mode

property.)
If you don’t want vertical fonts to show up in your font dialog, pass the CF_NO‐

VERTFONTS  flag. Of course, if you pass that flag, then your users won’t be able to use the

vertical-font trick any more.

Supplemental reading which served as the source material for this article:

Bonus head-to-head competition: You can read how Michael Kaplan blogged this exact

same subject in his own Kaplanesque way.

(function(){ if (document.namespaces) { document.namespaces.add(‘v’, ‘urn:schemas-

microsoft-com:vml’, “#default#VML”); for (var i = 0; i < vmlContent.length; i++)

vmlContent[i].style.display = "block"; if (vmlContent.style) vmlContent.style.display =

"block"; for (var i = 0; i < svgContent.length; i++) svgContent[i].style.display = "none"; if

(svgContent.style) svgContent.style.display = "none"; } var c =

document.getElementById("detect20120719").children; if (c[1].offsetLeft – c[0].offsetLeft !=

http://www.datadynamics.com/forums/101294/ShowPost.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2011/12/24/10250164.aspx#10250876
http://dev.w3.org/csswg/css3-writing-modes/#writing-mode
http://blogs.msdn.com/b/michkap/archive/2009/09/23/9898441.aspx


3/3

c[2].offsetLeft – c[1].offsetLeft && c[2].offsetLeft – c[1].offsetLeft == c[3].offsetLeft –

c[2].offsetLeft) { document.getElementById("y20120719").style.display = "block";

document.getElementById("n20120719").style.display = "none"; } })();

Raymond Chen

Follow







https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

