
1/3

June 28, 2012

You still need the "safe" functions even if you check
string lengths ahead of time

devblogs.microsoft.com/oldnewthing/20120628-00

Raymond Chen

Commenter
POKE53280,0
claims,
“If one validates parameters before using string functions

(which quality programmers should do),
the ‘safe’ functions have no reason to exist.”

Consider the following function:

int SomeFunction(const char *s)

{

 char buffer[256];

 if (strlen(s) ≥ 256) return ERR;

 strcpy(buffer, s);

 ...

}

What could possibly go wrong?
You check the length of the string, and if it doesn’t fit
in the

buffer, then you reject it.
Therefore, you claim, the strcpy is safe.

What could possibly go wrong is that the length of the string
can change between the time

you check it and the time you use it.

char attack[512] = "special string designed to trigger a "

 "buffer overflow and attack your machine. [...]";

void Thread1()

{

char c = attack[256];

while (true) {

 attack[256] ^= c;

}
}

void Thread2()

{

while (true) {

 SomeFunction(attack);

}
}

https://devblogs.microsoft.com/oldnewthing/20120628-00/?p=7263
http://blogs.msdn.com/b/oldnewthing/archive/2010/12/08/10101773.aspx#10102139

2/3

The first thread changes the length of the string rapidly between
255 and 511, between a

string that passes validation and a string that
doesn’t, and more specifically between a string

that passes validation
and a string that, if it snuck through validation, would pwn the

machine.

The second thread keeps handing this string to
 SomeFunction .
Eventually, the following

race condition will be hit:

Thread 1 changes the length to 255.

Thread 2 checks the length and when it reaches attack[256],
it reads zero and concludes

that the string length is
less than 256.

Thread 1 changes the length to 511.

Thread 2 copies the string and when it reaches attack[256],
it reads nonzero and keeps

copying, thereby overflowing its buffer.

Oops, you just fell victim to the
Time-of-check-to-time-of-use attack
(commonly abbreviated

TOCTTOU).

Now, the code above as-written is not technically a vulnerability
because
you haven’t crossed

a security boundary.
The attack code and the vulnerable code are running under the same

security context.
To make this a true vulnerability, you need to have the attack code
running

in a lower security context from the vulnerable code.
For example, if the threads were

running user-mode code and
 SomeFunction is a kernel-mode function,
then you have a real

vulnerability.
Of course, if SomeFunction were at the boundary
between user-mode and

kernel-mode, then it has other things
it needs to do, like verify that the memory is in fact

readable
by the process.

A more interesting case where you cross a security boundary
is if the two threads are running

code driven from an untrusted
source; for example, they might be threads in a script

interpreter,
and the toggling of attack[256] is being done by
a function on a Web page.

// this code is in some imaginary scripting language

var attack = new string("...");

procedure Thread1()

{

var c = attack[256];

while (true) attack[256] ^= c;

}

handler OnClick()

{

new backgroundTask(Thread1);

while (true) foo(attack);

}

http://blogs.msdn.com/b/oldnewthing/archive/2010/02/16/10101773.aspx

3/3

When the user clicks on the button, the script interpret
creates a background thread and

starts toggling the
length of the string under the instructions of the script.
Meanwhile, the

main thread calls foo
repeatedly.
And suppose the interpreter’s implementation of foo

goes like this:

void interpret_foo(const function_args& args)

{

if (args.GetLength() != 1) wna("foo");

if (args.GetArgType(0) != V_STRING) wta("foo", 0, V_STRING);

char *s = args.PinArgString(0);

SomeFunction(s);

args.ReleasePin(0);

}

The script interpreter has kindly converted the script
code into the equivalent native code,

and now you have a problem.
Assuming the user doesn’t get impatient and click “Stop script”,

the script will eventually hit the race condition and cause
a buffer overflow in Some‐

Function .

And then you get to scramble a security hotfix.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

