
1/4

June 22, 2012

How did real-mode Windows fix up jumps to functions
that got discarded?

devblogs.microsoft.com/oldnewthing/20120622-00

Raymond Chen

In a discussion of how real-mode Windows
walked stacks,
commenter Matt wonders
about

fixing jumps in the rest of the code to the discarded functions.

I noted in the original article that
“there are multiple parts to the solution”
and that stack-

walking was just one piece.
Today, we’ll look at another piece:
Inter-segment fixups.

Recall that real-mode Windows ran on an 8086 processor,
a simple processor with no

memory manager, no CPU privilege levels,
and no concept of task switching.
Memory

management in real-mode Windows was handled manually by
the real-mode kernel,
and the

way it managed memory was by loading code from disk
on demand, and discarding code

when under memory pressure.
(It didn’t discard data because it wouldn’t know how to

regenerate it,
and it can’t swap it out because there was no swap file.)

There were a few flags you could attach to a segment.
Of interest for today’s discussion are

movable
(and it was spelled without the “e”)
and discardable.
If a segment was not movable

(known as fixed),
then it was loaded into memory and stayed there until the
module was

unloaded.
If a segment was movable, then the memory manager was allowed
to move it

around when it needed to defragment memory in order
to satisfy a large memory allocation.

And if a segment was discardable,
then it could even be evicted from memory
to make room

for other stuff.

Movable Discardable Meaning

No No Cannot be moved or discarded

No Yes (invalid combination)

Yes No Can be moved in memory

Yes Yes Can be moved or purged from memory

https://devblogs.microsoft.com/oldnewthing/20120622-00/?p=7303
http://blogs.msdn.com/b/oldnewthing/archive/2011/03/16/10141735.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2011/03/16/10141735.aspx#10142248

2/4

I’m going to combine the movable and discardable cases,
since the effect is the same for the

purpose of
today’s discussion,
the difference being that with discardable memory,
you also

have the option of throwing the memory out entirely.

First of all, let’s get the easy part out of the way.
If you had an intra-segment call
(calling a

function in your own segment),
then there was no work that needed to be done.
Real-mode

Windows always discarded full segments,
so if your segment was running code,
it was by

definition present,
and therefore any other code in that segment was also present.
The hard

part is the inter-segment calls.

As it happens,
an old document on the 16-bit Windows executable file format
gives you some

insight into how things worked,
if you sit down and puzzle it out hard enough.

Let’s start with the GetProcAddress function.
When you call GetProcAddress , the kernel

needs
to locate the address of the function inside the target module.
The loader consults the

Entry Table to find the function
you’re asking for.
As you can see, there are three types of

entries in the
Entry Table.
Unused entries (representing ordinals with no associated

function),
fixed segment entries, and movable segment entries.
Obviously, if the match is in

an unused entry, the return value
is NULL because there is no such function.
If the match is

in a fixed entry, that’s pretty easy too:
Look up the segment number in the target module’s

segment list
and combine it with the specified offset.
Since the segment is fixed, you can just

return the raw pointer
directly, since the code will never move.

The tricky part is if the function is in a movable segment.
If you look at the document, it says

that “a moveable segment entry
is 6 bytes long and has the following format.”
It starts with a

byte of flags (not important here),
a two-byte INT 3Fh instruction,
a one-byte segment

number, and the offset within the segment.

What’s the deal with the
 INT 3Fh instruction?
It seems rather pointless to specify that a file

format
requires some INT 3Fh instructions
scattered here and there.
Why not get rid of it

to save some space in the file?

If you called GetProcAddress and the result
was a function in a movable segment,
the

GetProcAddress didn’t actually return the
address of the target function.
It returned the

address of the INT 3Fh instruction!
(Thankfully, the Entry Table is always a fixed segment,

so we don’t have to worry about the Entry Table itself being discarded.)

(Now you see why the file format includes these strange
 INT 3Fh instructions:
The file

format was designed to be loaded directly
into memory.
When the loader loads the entry

table,
it just slurps it into memory and bingo, it’s ready to go,
 INT 3Fh instructions and all!)

Since GetProcAddress returned the address of the
 INT 3Fh instruction,
calls to imported

functions didn’t actually go straight
to the target.
Instead, you called the INT 3Fh

instruction,
and it was the
 INT 3Fh handler which said,
“Gosh, somebody is trying to call

http://support.microsoft.com/kb/65122

3/4

code in another segment.
Is that segment loaded?”
It took the return address of the interrupt

and used it to
locate the segment number and offset.
If the segment in question was already

in memory,
then the handler jumped straight to the segment at the
specified offset.
You got

the function call you wanted, just in a roundabout way.

If the segment wasn’t loaded, then the
 INT 3Fh handler loaded it
(which might trigger a

round of discarding
and consequent
stack patching),
then jumped to the newly-loaded

segment at the specified offset.
An even more roundabout function call.

Okay, so that’s the case where a function pointer is obtained
by calling GetProcAddress .

But it turns out that a lot of stuff inside the kernel turns into
 GetProcAddress at the end of

the day.

Suppose you have some code that calls a function in another
segment within the same

module.
As we saw earlier, fixups are
threaded through the code segment,
and if you scroll

down to the
Per Segment Data section of that old document,
you’ll see a description of the

way the relocation records
are expressed.
A call to a function to a segment within the same

module
requires an INTERNALREF fixup,
and as you can see in the document, there are two

types of
 INTERNALREF fixups, ones which refer to fixed
segments and ones which refer to

movable segments.

The easy case is a reference to a fixed segment.
In that case, the kernel can just look up where

it put that
segment, add in the offset, and patch that address into the
code segment.
Since it’s

a fixed segment, the patch will never have to be
revisited.

The hard case is a reference to a movable segment.
In that case, you can see that the

associated information in the
fixup table is the “ordinal number index into [the] Entry

Table.”

Aha, you now realize that the Entry Table is more than just a list
of your exported functions.

It’s also a list of all the functions in movable segments that
are called from other segments.
In

a sense, these are “secret exports” in your module.
(However, you can’t get to them by

GetProcAddress
because
 GetProcAddress knows how to keep a secret.)

To fix up a reference to a function in a movable segment,
the kernel calls the

SecretGetProcAddress (not its real name)
function, which as we saw before, returns not

the actual function pointer
but rather a pointer to the magic INT 3Fh in the
Entry Table.
It

is that pointer which is patched into your code segment,
so that when your code calls what it

thinks is a function in
another segment,
it’s really calling the Entry Table,
which as we saw

before, loads the code in the target segment if necessary
before jumping to it.

Matt wrote,
“If the kernel wants to discard that procedure,
it has to find that jump address in

my code,
and redirect it to a page fault handler,
so that when my process gets to it,
it will call

the procedure and fault the code back in.
How does it find all of the references to that

http://blogs.msdn.com/b/oldnewthing/archive/2011/03/16/10141735.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2006/07/17/668284.aspx

4/4

function across the program,
so that it can patch them all up?”
Now you know the answer:
It

finds all of those references because it already had to find them
when applying fixups.
It

doesn’t try to find them at discard time;
it finds them when it loads your segment.
(Exercise:

Why doesn’t it need to reapply fixups when a segment moves?)

All inter-segment function pointers were really pointers into the
Entry Table.
You passed a

function pointer to be used as a callback?
Not really; you really passed a pointer to your own

Entry Table.
You have an array of function pointers?
Not really; you really have an array of

pointers into your Entry Table.
It wasn’t actually hard for the kernel to find all of these

because you had to declare them in your fixup table in the first place.

It is my understanding that the INT 3Fh trick
came from the overlay manager which was

included with
the Microsoft C compiler.
(The
Zortech C compiler followed a similar model.)

Note:
While the above discussion describes how things worked
in principle,
there are in fact

a few places where the actual
implementation differs from the description above,
although

not in any way that fundamentally affects the design.

For example, real-mode Windows did a bit of optimization
in the INT 3Fh stubs.
If the

target segment was in memory,
then it replaced the INT 3Fh instruction
with a direct jmp

xxxx:yyyy to the target,
effectively precalculating the jump destination when a segment
is

loaded rather than performing the calculation each time
a function in that segment is called.

By an amazing coincidence, the code sequence

 int 3fh

 db entry_segment

 dw entry_offset

is five bytes long, which is the exact length
of a jmp xxxx:yyyy instruction.
Phew, the

patch just barely fits!

Raymond Chen

Follow

http://www.digitalmars.com/ctg/vcm.html
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

