
1/3

June 21, 2012

When the default pushbutton is invoked, the invoke goes
to the top-level dialog

devblogs.microsoft.com/oldnewthing/20120621-00

Raymond Chen

One quirk of nested dialogs lies in what happens when the user
presses Enter to invoke the

default pushbutton:
The resulting
 WM_COMMAND message
goes to the top-level dialog,
even if

the default pushbutton belongs to a sub-dialog.

Why doesn’t it send the WM_COMMAND to the parent
of the default pushbutton?
I mean, the

dialog manager knows the handle of the button,
so it can send the message to the button’s

parent, right?

Well, the dialog manager knows the handle of a button.
But not necessarily the button.
Recall

that if focus is not on a pushbutton,
then the dialog manager sets the default pushbutton

based on the control ID returned
by the DM_GETDEFID message,
and it does this by just

searching the dialog for a control with that ID.
If you have two controls with the same ID, it

picks one of them
arbitrarily.
So far so bad.

It’s like having two John Smiths living in your house,
one in the second bedroom and one

living in the guest
room.
The post office is very strict and won’t let you
write
“John Smith,

Second Bedroom, 1 Main Street”
and
“John Smith, Guest Room, 1 Main Street.”
All you’re

allowed to write is a name and an address.
Therefore, all the mail addressed to
“John Smith,

1 Main Street” ends up in a single mailbox
labeled
“1 Main Street” and now you have to figure

out who gets each
piece of mail.

Okay, so we saw that when converting an ID to a window,
and there are multiple windows

with the same ID,
the dialog manager will just pick one arbitrarily.
And if it picks the wrong

one,
it would have sent the WM_COMMAND to the wrong
dialog procedure entirely!
At least by

sending it to the top-level dialog, it says,
“Dude, I think it’s this window but I’m not sure, so if

you have
some really clever way of telling which is which, you can try to sort it out.”
And now

that the WM_COMMAND sometimes
goes to the top-level dialog,
you’re pretty much stuck

having it always go to the top-level
dialog for consistency.
It’s better to be consistently wrong

in a predictable manner
(so people can work around it reliably)
than to be mostly-right and

occasionally-completely-wrong.

https://devblogs.microsoft.com/oldnewthing/20120621-00/?p=7313
http://blogs.msdn.com/b/oldnewthing/archive/2012/06/19/10321772.aspx

2/3

Third rationale:
Because you’re asking for code to be written to handle a case
that people

shouldn’t have gotten into in the first place.
(Namely, duplicate control IDs.)

Whatever the reason, it’s something you need to be on the lookout for.
If you did everything

right and avoided control ID duplication,
then the workaround in your
 WM_COMMAND handler

is straightforward:

void OnCommand(HWND hwnd, int id, HWND hwndCtl, UINT codeNotify)

{

 if (hwndCtl != nullptr)

 {

 HWND hwndCtlParent = GetParent(hwndCtl);

 if (hwndCtlParent != nullptr &&

 hwndCtlParent != hwnd &&

 IsChild(hwnd, hwndCtlParent))

 {

 FORWARD_WM_COMMAND(hwndCtlParent, id,

 hwndCtl, codeNotify, SendMessage);

 return;

 }

 }

 ... the message was for me after all, so let's handle it...

 switch (id)

 {

 ...

 }

}

When we get the WM_COMMAND message,
we first check that it really came from one of our

direct
children.
If not, then we forward the message on to the control’s
actual parent.
(The

window that should have gotten the message in the first place
in an ideal world.)

Exercise:
Under what circumstances can the above workaround fail?
(Not counting the

scenario we’ve spent the past three days discussing.)

Anyway, back to the question from last time:
How does the property sheet manager deal with

multiple property sheets
pages having conflicting control IDs?
In addition to what we

previously discussed,
another mitigating factor is that the property sheet manager
keeps only

one child dialog visible at a time.
This takes the hidden child dialogs out of the running for

most
dialog-related activities, such as dialog navigation,
since invisible controls cannot be

targets of dialog navigation.
Furthermore, hidden child dialogs are skipped when searching

for keyboard accelerators,
thereby avoiding the problem of hidden accelerators.
So as long as

the property sheet manager makes sure that focus
doesn’t stay on a hidden control after a

page change,
there shouldn’t be any notifications coming from a hidden child dialog.
The

only conflicts it needs to worry about are conflicts
between the page and the frame.

Raymond Chen

http://blogs.msdn.com/b/oldnewthing/archive/2008/06/02/8568490.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

3/3

Follow

