
1/2

June 11, 2012

Why do you have to wait for Windows Error Reporting to
check for solutions before it restarts the application?

devblogs.microsoft.com/oldnewthing/20120611-00

Raymond Chen

Leo Davidson wonders why you have to wait for Windows Error Reporting to check for

solutions before it restarts the application. Why not do the two in parallel?
Well, for one

thing, when the application restarts, it might freak out if it sees a dead copy of itself. I know

for sure that I would freak out if I woke up one morning and saw my own dead body lying

next to me.
While Windows Error Reporting is checking for a solution, it still has access to

the carcass of the crashed application, because it may need to refer to it in order to answer

follow-up questions from the server. (“Hey, was version 3.14 of PI.DLL loaded into the

process when it crashed? If so, then I may have an idea what went wrong.”) And so that, if

you ask it to submit the crash to Microsoft, it can grab the information it needs in order to

generate the crash report.
Now suppose you start up a new copy of the application right

away. If the application is a single-instance program, it will look around for another copy of

itself, and hey look, it’ll find its own lifeless body in the middle of the computer version of an

autopsy. It will then try to send messages to the dead program, saying, “Hey, the user wants

to open document X; could you do that for me?” And it won’t get a response because, well,

the program is dead. It’s never going to respond.
Some programs don’t even try to pass

information along. They just find the existing copy of the program, and call Set‐

ForegroundWindow on its main window, thereby switching to it. Of course, what they tried

to do was switched to a crashed program.
Even worse, what if the second copy of the program

tries to extract information from the existing copy of itself? If the existing copy crashed, it’s

highly likely that the crash was caused by corruption in the program’s internal data

structures. When the second copy tries to extract the corrupted data, it may itself crash.

Immediately launching the replacement program creates a very quickly-growing pile of dead

programs, and your screen basically gets spammed with Windows Error Reporting dialogs

faster than you can click OK.
The crashed program has effectively launched a denial of service

attack against itself.
Before trying to start the program again, Windows makes sure that the

previous copy has received a proper burial. Because few programs are prepared to see their

own cadaver.

https://devblogs.microsoft.com/oldnewthing/20120611-00/?p=7413
http://blogs.msdn.com/b/oldnewthing/archive/2010/07/20/10040074.aspx#10040856
http://blogs.msdn.com/b/oldnewthing/archive/2004/06/15/156022.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2006/06/20/639479.aspx

2/2

Bonus chatter: Another common scenario is that the program crashes at startup.

Automatically restarting the program would just launch another copy that immediately

crashes. Again, you get into the situation where you get a dozen copies of the program

launched per second, all of which immediately crash.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

