
1/3

May 17, 2012

How to view the stack of threads that were terminated as
part of process teardown from the kernel debugger

devblogs.microsoft.com/oldnewthing/20120517-00

Raymond Chen

As we saw some time ago,
process shutdown is a multi-phase affair.
After you call

ExitProcess ,
all the threads are forcibly terminated.
After that’s done, each DLL is sent a

DLL_PROCESS_DETACH
notification.
You may be debugging
a problem with

DLL_PROCESS_DETACH handling
that suggests that some of those threads were not cleaned

up properly.
For example, you might assert that a reference count is zero,
and you find

during process shutdown that this assertion sometimes fires.
Maybe you terminated a thread

before it got a chance to release
its reference?
How can you test this theory if the thread is

already gone?

It so happens that when all the threads are terminated during the
early phase of process

shutdown,
the kernel is a bit lazy and doesn’t free their stacks.
It figures, hey, the entire

process is going away soon,
so the stack memory is going to be cleaned up as part of process

termination.
(It’s sort of the kernel equivalent of
not bothering to sweep the floor
of a

building that’s about to be demolished.)
You can use this to your advantage by grovelling the

stacks
that were left behind.

Hey, this is why you get called in to debug the hard stuff, right?

Before continuing, I need to emphasize that this information is
for debugging purposes only.
The structures and offsets are all implementation details
which can change from release to
release.

The first step is to identify where all the stacks are.
The direct approach is difficult because

the stacks can be all
different sizes, so it’s not easy to pick them out of a line-up.
But one

thing does come in a consistent size: The
TEB.

From the kernel debugger, use the !process command
to dump the process you are

interested in,
and from the header information, extract the VadRoot .

https://devblogs.microsoft.com/oldnewthing/20120517-00/?p=7603
http://blogs.msdn.com/b/oldnewthing/archive/2007/05/03/2383346.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2012/01/05/10253268.aspx
http://msdn.microsoft.com/en-us/library/ff565433.aspx

2/3

1: kd> !process -1

PROCESS 8731bd40 SessionId: 1 Cid: 0748 Peb: 7ffda000 ParentCid: 0620

 DirBase: 4247b000 ObjectTable: 96f66de0 HandleCount: 104.

 Image: oopsie.exe

 VadRoot 893de570 Vads 124 Clone 0 Private 518. Modified 643. Locked 0.

 DeviceMap 995628c0

Dump this VAD root with the !vad command,
and pay attention only to the entries which

say
 1 Private READWRITE .

1: kd> !vad 893de570

VAD level start end commit

... ignore everything except "1 Private READWRITE" ...

8730a5f0 (6) 50 50 1 Private READWRITE

9ab0cb40 (5) 60 7f 1 Private READWRITE

893978b0 (6) 80 9f 1 Private READWRITE

87302d30 (5) 110 110 1 Private READWRITE

889693f8 (6) 120 121 1 Private READWRITE

872f3fb8 (6) 170 170 1 Private READWRITE

87089a80 (6) 1a0 1a0 1 Private READWRITE

8cbf1cb0 (5) 1c0 1df 1 Private READWRITE

88c079d0 (6) 1e0 1e0 1 Private READWRITE

9abc33e0 (6) 410 48f 1 Private READWRITE

873173b0 (7) 970 970 1 Private READWRITE

8ca1c158 (7) 7ffd5 7ffd5 1 Private READWRITE

88c02a78 (6) 7ffd6 7ffd6 1 Private READWRITE

872f9298 (5) 7ffd7 7ffd7 1 Private READWRITE

8750d210 (7) 7ffd8 7ffd8 1 Private READWRITE

87075ce8 (6) 7ffda 7ffda 1 Private READWRITE

87215da0 (4) 7ffdc 7ffdc 1 Private READWRITE

872f2200 (6) 7ffdd 7ffdd 1 Private READWRITE

8730a670 (5) 7ffdf 7ffdf 1 Private READWRITE

(If you are debugging from user mode, then you can use
 !vadump but the output format is

different.)

Each of these is a candidate TEB.
In practice, TEBs tend to be allocated at the high end of

memory,
so the ones with a low start value are probably
red herrings.
Therefore, you

should investigate these candidates in reverse order.

For each candidate, take the start address and append
three zeroes.
(Each page on x86 is

4KB, which conveniently maps to 1000 in hex.)
Dump the first seven
pointers of the TEB

with the dp xxxxx000 L7
command.

1: kd> dp 7ffdf000 L7

7ffdf000 0016fbb0 00170000 0016b000 00000000

7ffdf010 00001e00 00000000 7ffdf000 ← hit

3/3

If the TEB is valid, then the seventh pointer points back
to the start of the TEB.
In a valid

TEB,
the second and third values are the
stack limits; in this case, the candidate stack lives

between
 0016b000 and 00170000 .
(As a double-check, you can verify that the upper limit

of the
stack, 00170000 in this case, matches up with
the end of a VAD allocation in the

!vad output above.)

Now that you know where the stack is, you can dps it
and
look for EBP frames.
(I usually

start about two to four pages below the upper limit of the stack.)
Test out each candidate EBP

frame with the k= command
until you find one that seems to be solid.
Record this

candidate stack trace in a text file for further study.

Repeat for each candidate TEB, and you will eventually reconstruct
what each thread in the

process was doing at the moment it was
terminated.
If you’re really lucky, you might even see

the code that incremented
the reference count
but was terminated before it could release it.

The above discussion also applies to debugging 64-bit processes.
However, instead of looking

for
 1 Private READWRITE pages, you want to look for
 2 Private READWRITE pages.
As

an additional wrinkle, if you are debugging ia64, then converting
a page frame to a linear

address is sadly not as simple as appending
three zeroes.
Pages on ia64 are 8KB, not 4KB, so

you need to shift the value left
by 25 bits: Add three zeroes and then multiply by two.

And finally, if you are debugging a 32-bit process on x64,
then you want to look for 3

Private READWRITE pages,
but add 2 before appending the three zeroes.
That’s because the

TEB for a 32-bit process on x64 is really two
TEBs glued together: A 64-bit TEB followed by a

32-bit TEB.

Note:
I did not come up with this debugging technique on my own.
I learned it from an even

greater debugging genius.

Next time, we’ll look at debugging this issue from a user-mode
debugger.

Trivia:
The informal term for these terminated-but-not-yet-completely-destroyed
threads is

ghost threads.
The term was coined by the Exchange support team,
because they often have

to study server failures
that require them to do this type of investigation,
and they needed a

cute name for it.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2011/03/09/10138401.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2012/05/18/10306501.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

