
1/2

April 27, 2012

A process shutdown puzzle, Episode 2
devblogs.microsoft.com/oldnewthing/20120427-00

Raymond Chen

A customer reported that their program would very sporadically
crash in the function
Close‐

ThreadpoolCleanupGroupMembers.
The customer was kind enough to provide a stack trace

at the point
of the crash:

ntdll!RtlUnhandledExceptionFilter2+0x31e

KERNELBASE!UnhandledExceptionFilter+0x175

ntdll!RtlUserThreadStart$filt$0+0x3f

ntdll!__C_specific_handler+0x8f

ntdll!RtlpExecuteHandlerForException+0xd

ntdll!RtlDispatchException+0x3a6

ntdll!RtlRaiseException+0x223

ntdll!TppRaiseInvalidParameter+0x48

ntdll!TpReleaseCleanupGroupMembers+0x246

litware!CThreadPool::UnInitialize+0x22

litware!_CRT_INIT+0xbf

litware!__DllMainCRTStartup+0x18b

ntdll!LdrpCallInitRoutine+0x3f

ntdll!LdrShutdownProcess+0x205

ntdll!RtlExitUserProcess+0x90

kernel32!ExitProcessImplementation+0xa

contoso!wmain+0x193

contoso!__wmainCRTStartup+0x13d

kernel32!BaseThreadInitThunk+0xd

ntdll!RtlUserThreadStart+0x1d


The customer wondered,
“Could the problem be that my cleanup group does not have
a

callback?
MSDN seems to suggest that this is okay.”

The exception being thrown is
 STATUS_INVALID_PARAMETER ,
but that doesn’t really say

much.

But that’s okay, because the smoking gun isn’t the exception
being raised.
It’s in the stack.

Do you see it?

https://devblogs.microsoft.com/oldnewthing/20120427-00/?p=7763
http://msdn.microsoft.com/en-us/library/ms682036(VS.85).aspx


2/2

The code is calling
 CloseThreadpoolCleanupGroupMembers 
from inside DllMain 
while

handling the
 DLL_PROCESS_DETACH  notification.
Looking further up the stack, you can see

this was triggered by
a call to ExitProcess ,
and now all the stuff you know about
how

processes exit
kicks in.

For example, that the first thing that happens is that all threads
are forcibly terminated.

That’s your next clue.

Observe that the customer’s DLL is trying to communicate with the
thread pool during

process termination.
But wait, all the threads have already been terminated.
It’s trying to

communicate with a nonexistent thread pool.

The thread pool realizes,
“Hey, like I’ve already been destroyed.
I can’t do what you ask

because there is no thread pool any more.
You want me to block until all currently executing

callback
functions finish,
but those callback functions will never finish (if they even exist at

all)
because the threads hosting their thread pool got destroyed.
Not that I can tell whether

they are executing or not,
because I am already destroyed.
The only options are to hang or

crash.
I think I’ll crash.”

The customer needs to restructure the program so that it either
cleans up its thread pool

work before the
 ExitProcess ,
or it can simply skip all thread pool operations when the

reason for
the DLL_PROCESS_DETACH  is process termination.

Raymond Chen

Follow







http://blogs.msdn.com/b/oldnewthing/archive/2007/05/03/2383346.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

