
1/4

April 20, 2012

What does INIT_ONCE_CTX_RESERVED_BITS mean?
devblogs.microsoft.com/oldnewthing/20120420-00

Raymond Chen

Windows Vista adds the
One-Time Initialization
family of functions
which address a

common coding pattern:
I want a specific chunk of code to run exactly once,
even in the face

of multiple calls from different threads.
There are many implementations of this pattern,

such as the infamous
double-checked lock.
The double-checked lock is very easy to get

wrong,
due to memory ordering and race conditions,
so
the kernel folks
decided to write it for

you.

The straightforward way of using a one-time-initialization
object is to have it protect the

initialization of some other
object.
For example, you might have it protect a static object:

INIT_ONCE GizmoInitOnce = INIT_ONCE_STATIC_INIT;

Gizmo ProtectedGizmo;

BOOL CALLBACK InitGizmoOnce(

 PINIT_ONCE InitOnce,

 PVOID Parameter,

 PVOID *Context)

{

 Gizmo *pGizmo = reinterpret_cast<Gizmo*>(Parameter);

 pGizmo->Initialize();

 return TRUE;

}

SomeFunction(...)

{

 // Initialize ProtectedGizmo if not already initialized

 InitOnceExecuteOnce(&GizmoInitOnce,

 InitGizmoOnce,

 &ProtectedGizmo,

 NULL);

 // At this point, ProtectedGizmo has been initialized

 ProtectedGizmo.Something();

 ...

}

Or you might have it protect a dynamic object:

https://devblogs.microsoft.com/oldnewthing/20120420-00/?p=7813
http://msdn.microsoft.com/en-us/library/aa363808(v=VS.85).aspx
http://en.wikipedia.org/wiki/Double-checked_locking
http://blogs.msdn.com/b/oldnewthing/archive/2012/04/17/10294294.aspx

2/4

class Widget

{

 Widget()

 {

 InitOnceInitialize(&m_InitOnce);

 }

 void Initialize();

 ...

 static BOOL CALLBACK InitWidgetOnce(

 PINIT_ONCE InitOnce,

 PVOID Parameter,

 PVOID *Context)

 {

 Widget *pWidget = reinterpret_cast<Widget*>(Parameter);

 pWidget->Initialize();

 return TRUE;

 }

 SomeMethod(...)

 {

 // Initialize ourselves if not already initialized

 InitOnceExecuteOnce(&InitWidgetOnce,

 this,

 NULL);

 // At this point, we have been initialized

 ... some other stuff ...

 }

}

But it so happens that you can also have the INIT_ONCE
object protect itself.

You see, once the INIT_ONCE object has entered the
“initialization complete” state, the one-

time initialization code
only needs a few bits of state.
The other bits are unused, so the kernel

folks figured,
“Well, since we’re not using them, maybe the application wants to use them.”

That’s where INIT_ONCE_CTX_RESERVED_BITS comes in.
The

INIT_ONCE_CTX_RESERVED_BITS value is the number of bits
that the one-time initialization

code uses after initialization is complete;
the other bits are free for you to use yourself.
The

value of
 INIT_ONCE_CTX_RESERVED_BITS is 2,
which means that you can store any value

that’s a multiple of 4.
If it’s a pointer, then the pointer must be DWORD -aligned
or better.

This requirement is usually easy to meet because heap-allocated objects
satisfy it, and the

pointer you want to store is usually a pointer
to a heap-allocated object.
As noted some time

ago,
kernel object handles are also multiples of four,
so those can also be safely stored inside

the INIT_ONCE
object.
(On the other hand, USER and GDI handles are not guaranteed
to be

multiples of four, so you cannot use this trick to store those
types of handles.)

Here’s an example.
First, the code which uses the traditional method of having the

INIT_ONCE structure protect another variable:

http://blogs.msdn.com/b/oldnewthing/archive/2005/01/21/358109.aspx

3/4

// using the static object pattern for simplicity

INIT_ONCE PathInitOnce = INIT_ONCE_STATIC_INIT;

LPWSTR PathToDatabase = NULL;

BOOL CALLBACK InitPathOnce(

 PINIT_ONCE InitOnce,

 PVOID Parameter,

 PVOID *Context)

{

 LPWSTR Path = (LPWSTR)LocalAlloc(LMEM_FIXED, ...);

 if (Path == NULL) return FALSE;

 ... get the path in Path...

 PathToDatabase = Path;

 return TRUE;

}

SomeFunction(...)

{

 // Get the database path (initializing if necessary)

 if (!InitOnceExecuteOnce(&PathInitOnce,

 InitPathOnce,

 NULL,

 NULL)) {

 return FALSE; // couldn't get the path for some reason

 }

 // The "PathToDatabase" variable now contains the path

 // computed by InitPathOnce.

 OtherFunction(PathToDatabase);

 ...

}

Since the object being protected is pointer-sized and satisfies
the necessary alignment

constraints,
we can merge it into the INIT_ONCE structure.

4/4

INIT_ONCE PathInitOnce = INIT_ONCE_STATIC_INIT;

BOOL CALLBACK InitPathOnce(

 PINIT_ONCE InitOnce,

 PVOID Parameter,

 PVOID *Context)

{

 LPWSTR Path = (LPWSTR)LocalAlloc(LMEM_FIXED, ...);

 if (Path == NULL) return FALSE;

 ... get the path in Path...

 *Context = Path;

 return TRUE;

}

SomeFunction(...)

{

 LPWSTR PathToDatabase;

 // Get the database path (initializing if necessary)

 if (!InitOnceExecuteOnce(&PathInitOnce,

 InitPathOnce,

 NULL,

 &PathToDatabase)) {

 return FALSE; // couldn't get the path for some reason

 }

 // The "PathToDatabase" variable now contains the path

 // computed by InitPathOnce.

 OtherFunction(PathToDatabase);

 ...

}

This may seem like a bunch of extra work to save four bytes
(or eight bytes on 64-bit

Windows),
but
if you use the asynchronous initialization model,
then you have no choice but

to use context-based initialization,
as we learned when we tried to
write our own lock-free

one-time initialization code.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2011/04/07/10150728.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

