
1/2

April 11, 2012

I know that an overlapped file handle requires an
lpOverlapped, but why does it (sometimes) work if I omit
it?

devblogs.microsoft.com/oldnewthing/20120411-00

Raymond Chen

A customer observed that the formal requirements for the ReadFile function specify that if

the handle was opened with FILE_FLAG_OVERLAPPED , then the lpOverlapped parameter

is mandatory. But the customer observed that in practice, passing NULL results in strange

behavior. Sometimes the call succeeds, and sometimes it even returns (horrors!) valid data.

(Actually the more horrifying case is where the call succeeds and returns bogus data!)
Now

sure, you violated one of the requirements for the function, so the behavior is undefined. But

why doesn’t ReadFile just flat-out fail if you call it incorrectly?
The answer is that the

ReadFile function doesn’t know whether you’re calling it correctly.
The ReadFile

function doesn’t know whether the handle you passed was opened for overlapped or

synchronous access. It just trusts that you’re calling it correctly and builds an asynchronous

call to pass into the kernel. If you passed a synchronous handle, well, it just issues the I/O

request into the kernel anyway, and you get what you get.
This quirk traces its history all the

way back to the Microsoft Windows NT OS/2 Design Workbook. As originally designed,

Windows NT had a fully asynchronous kernel. There was no such thing as a blocking read. If

you wanted a blocking read, you had to issue an asynchronous read (the only kind available),

and then block on it.
As it turns out, developers vastly prefer synchronous reads. Writing

asynchronous code is hard. So the kernel folks relented and said, “Okay, we’ll have a way for

you to specify at creation time whether you want a handle to be synchronous or

asynchronous. And since lazy people prefer synchronous I/O, we’ll make synchronous I/O

the default, so that lazy people can keep being lazy.”
The ReadFile function is a wrapper

around the underlying NtReadFile function. If you pass an lpOverlapped , then it takes

the OVERLAPPED structure apart so it can pass the pieces as an IoStatusBlock and a

ByteOffset . (And if you don’t pass an lpOverlapped , then it needs to create temporary

buffers on the stack.) All this translation takes place without the ReadFile function actually

knowing whether the handle you passed is asynchronous or synchronous; that information

isn’t available to the ReadFile function. It’s relying on you, the caller, to pass the

parameters correctly.
As it happens, the NtReadFile function does detect that you are

trying to perform synchronous I/O on an asynchronous handle and fails with

https://devblogs.microsoft.com/oldnewthing/20120411-00/?p=7883
http://msdn.microsoft.com/en-us/library/aa365467(VS.85).aspx
http://www.americanhistory.si.edu/collections/object.cfm?key=35&objkey=124
http://msdn.microsoft.com/en-us/library/ff556706(VS.85).aspx

2/2

STATUS_INVALID_PARAMETER (which the ReadFile function turns into

ERROR_INVALID_PARAMETER), so you know that something went wrong.
Unless you are a

pipe or mailslot.
For some reason, if you attempt to issue synchronous I/O on an

asynchronous handle to a pipe or mailslot, the I/O subsystem says, “Sure, whatever.” I

suspect this is somehow related to the confusing no-wait model for pipes.

Long before this point, the basic ground rules for programming kicked in. “Pointers are not

NULL unless explicitly permitted otherwise,” and the documentation clearly forbids passing

NULL for asynchronous handles. The behavior that results from passing invalid parameters

is undefined, so you shouldn’t be surprised that the results are erratic.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2011/01/14/10115610.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2006/03/20/555511.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

