
1/3

March 23, 2012

Why is the Heap32Next function incredibly slow on
Windows 7?

devblogs.microsoft.com/oldnewthing/20120323-00

Raymond Chen

A customer observed that the Heap32Function runs much slower on Windows 7 compared

to previous versions of Windows. What happened?

Set the wayback machine to 1992. The product is Windows 3.1. One of the new components

available in Windows 3.1 went by the name TOOLHELP . It let you snoop around the low-level

guts of the Windows 3.1 kernel, and the feature that is relevant here is walking the heaps.

Since Windows 3.1 was a cooperatively multitasking system, you could ensure that the heap

was stable during your calls to HeapFirst and HeapNext by the simple process of not

yielding control.

Mind you, ToolHelp was not part of the kernel itself. It was bolted onto the side. As I recall,

ToolHelp arrived late on the scene, and the kernel folks didn’t want to destabilize the kernel

with any ToolHelp-related changes, so all the work done by ToolHelp was done “from the

outside”.

Windows 95 introduced 32-bit versions of the ToolHelp functions. I’m not sure why.

Where was I? Oh right, Heap32Next .

In the 32-bit version of ToolHelp, you could walk the heap of a process by calling Heap32‐

First and Heap32Next . As implemented in Windows 95, the Heap32First function

allocated some memory to keep track of the state of the heap walk and stored it in the

HEAPENTRY32.dwResvd field. The Heap32Next used this state to find the next heap block,

and it finally freed the memory when the end of the heap was reached (and Heap32Next

returned FALSE). This means that if you call Heap32First and do not walk the heap to

completion but rather abandon the walk partway through, you leaked some memory. Unlike

functions like FindFirstFile which have an explicit FindClose function to indicate that

you are done with the enumeration (and allow the operating system to free the tracking

state), there was no corresponding Heap32Close function. The only way to free the memory

was to walk the heap to the end. The Windows 95 implementation also didn’t handle the case

that the heap changed while you were walking it.

https://devblogs.microsoft.com/oldnewthing/20120323-00/?p=8023

2/3

But since the toolhelp library was intended for diagnostic purposes anyway (I mean, it’s right

there in the name: tool help), these weren’t considered serious problems. Your debugging

plug-in might use it to walk the heap looking for memory leaks, but you wouldn’t deploy it in

production, right?

The Windows NT folks didn’t like that there was a memory leak built into the design. Since

there was no way to ensure that the memory allocated by Heap32First was freed in the

event the application wanted to abandon the heap walk, their solution was simply to free all

allocated memory before returning from Heap32First and Heap32Next . If an application

asks to walk the heap, the Heap32First takes a snapshot of the heap, returns the first heap

block, then frees the snapshot. When the application calls Heap32Next , it takes a snapshot

of the heap, returns the second heap block, then frees the snapshot. On the second call to

Heap32Next , it takes a snapshot of the heap, returns the third heap block, then frees the

snapshot. You get the idea.

As a result, walking the heap via Heap32First / Heap32Next is an O(n²) operation.

So why did this become slower in Windows 7?

Prior to Windows 7, the snapshot was taken in a fixed-size buffer that held information for

around a quarter million heap entries. As a result, there was a hard limit on the worst-case

cost of walking the heap via the toolhelp functions. In Windows 7, this hard limit was lifted

because there were some diagnostic tools which were bumping into this limit. The kernel

folks decided that it was better to have the functions be slow but correct rather than fast and

incomplete. Since the limit was lifted, so too was the cap on the worst-case cost of walking

the heap with Heap32First / Heap32Next .

Toolhelp was designed back in the days of co-operative multitasking and hasn’t aged well. At

this point, he’s sort of this unwanted distant relative in the kernel. Nobody actually likes him,

but when he shows up at the family reunion, you have to let him in.

By the way, the recommended way to walk the contents of the heap is to use the HeapWalk

function. The HeapWalk function does not suffer from this problem; enumerating the entire

heap via repeated calls to HeapWalk has total running time proportional to the number of

heap blocks. Note that HeapWalk can only enumerate heap blocks from the current process.

If you’re doing cross-process heap walking for diagnostic purposes, then you’re stuck with

Heap32First / Heap32Next , but since you’re just doing it for diagnostic purposes,

correctness should be more important to you than performance.

Raymond Chen

Follow

http://technet.microsoft.com/en-us/sysinternals/dd535533.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

3/3

