
1/4

March 16, 2012

Memory allocation functions can give you more memory
than you ask for, and you are welcome to use the
freebies too, but watch out for the free lunch

devblogs.microsoft.com/oldnewthing/20120316-00

Raymond Chen

Memory allocation functions like
 HeapAlloc ,
 GlobalAlloc ,
 LocalAlloc ,
and
 CoTask‐

MemAlloc
all have the property that they can return more memory
than you requested.
For

example, if you ask for 13 bytes, you may very well get a
pointer to 16 bytes.
The

corresponding XxxSize functions return the actual
size of the memory block,
and you are

welcome to use all the memory in the block up to the
actual size (even the bytes beyond the

ones you requested).
But watch out for the free lunch.

Consider the following code:

BYTE *GetSomeZeroBytes(SIZE_T size)

{

BYTE *bytes = (BYTE*)HeapAlloc(GetProcessHeap(), 0, size);

if (bytes) ZeroMemory(bytes, size);

return bytes;

}

So far so good.
We allocate some memory, and then fill it with zeroes.
That gives us our zero-

initialized memory.

Or does it?

BYTE *bytes = GetSomeZeroBytes(13);

SIZE_T actualSize = HeapSize(GetProcessHeap(), 0, bytes);

for (SIZE_T i = 0; i < actualSize; i++) {

assert(bytes[i] == 0); // assertion fires!?

}

When you ask the heap manager for 13 bytes,
it’s probably going to round that up to 16,
and

when you call
 HeapSize ,
it may very well say,
“Hey, I gave you three extra bytes.
Don’t need

to thank me.”

The problem comes when you try to reallocate the memory:

https://devblogs.microsoft.com/oldnewthing/20120316-00/?p=8083

2/4

BYTE *ReallocAndZero(BYTE *bytes, SIZE_T newSize)

{

return (BYTE*)HeapReAlloc(bytes, GetProcessHeap(),

 HEAP_ZERO_MEMORY, newSize);

}

Here, you said,
“Dear heap manager,
please make this memory block bigger,
and zero out the

new bytes.
Kthxbai.”
And, assuming the heap manager was successful,
you will indeed have a

larger memory block,
and the new bytes will have been zeroed out.

But the memory manager won’t zero out the three bonus
bytes it gave you when you called

HeapAlloc ,
because those bytes aren’t new.
In fact, the heap manager assumes that you

knew about
those three extra bytes and were actively using them,
and it would be rude to

zero out those bytes behind your back.

Those bytes you didn’t know about since you didn’t check.

You might think the problem is that you mixed zero-allocation modes.
You allocated the

memory as
“Go ahead and give me garbage,
I’ll zero it out myself”,
and then you reallocated it

as
“Can you zero it out for me?”
The problem is that you and the heap manager
disagree on

how big it is.
While you assume that the size of it is
“the exact number of bytes I asked for”,

the heap manager assumes that the size of it is
“the exact number of bytes I gave you.”
Those

bytes in the middle fall through the cracks.

Therefore, you might
try to fix it by changing your function like this:

BYTE *ReallocAndZero(BYTE *bytes, SIZE_T newSize)

{

SIZE_T oldSize = HeapSize(GetProcessHeap(), bytes);

BYTE *newBytes = (BYTE*)HeapReAlloc(bytes, GetProcessHeap(),

 0, size);

if (newBytes && newSize > oldSize) {

 ZeroMemory(newBytes + oldSize, newSize - oldSize);

}
return newBytes;

}

But this doesn’t work, because of the reason
we gave above:
Your call to
 HeapSize will

return the
actual block size, not the requested size.
You will therefore forget to zero out those

three
bytes you didn’t know about.

The real problem is in the
 GetSomeZeroBytes
function.
It decided to manually zero out the

bytes it received,
but it zeroed out only the bytes that were requested,
not the actual bytes

received.

One solution is to make sure to zero out everything,
so that if it is reallocated, the extra bytes

gained in the
reallocation will also be zero.

3/4

BYTE *GetSomeZeroBytes(SIZE_T size)

{

BYTE *bytes = (BYTE*)HeapAlloc(GetProcessHeap(), 0, size);

if (bytes) ZeroMemory(bytes,

 HeapSize(GetProcessHeap(), bytes));

return bytes;

}

Another solution is to take advantage of the memory manager’s
 HEAP_ZERO_MEMORY flag,

which tells the memory manager to zero out the entire block
of memory when it is allocated:

BYTE *GetSomeZeroBytes(SIZE_T size)

{

return (BYTE*)HeapAlloc(GetProcessHeap(),

 HEAP_ZERO_MEMORY, size);

}

… and to use the same flag when reallocating:

BYTE *ReallocAndZero(BYTE *bytes, SIZE_T newSize)

{

return (BYTE*)HeapReAlloc(bytes, GetProcessHeap(),

 HEAP_ZERO_MEMORY, size);

}

Most of the heap functions let you specify that you
want the heap manager to zero out the

memory for you,
and that includes the bonus bytes.
For example,
you can use
 GMEM_ZERO‐

INIT with the
 GlobalAlloc family of functions,
and
 LMEM_ZEROINIT with the
 Local‐

Alloc family of functions.
The annoying one is
 CoTaskMemAlloc ,
since it does not provide

a flag for zero-allocation.
You have to zero out the memory yourself,
and you have to do it

right.
(The inspiration for today’s article was a bug caused by
not zeroing out the memory

correctly.)

There are other implications of these bonus bytes.
For example,
if you use
 CreateStreamOn‐

HGlobal
to create a stream on an existing HGLOBAL ,
the function uses
 GlobalSize to

determine the size of the
stream it should create.
And that value includes the bonus bytes,

even though you may not have realized that
they were there.
Result: You create a stream of 13

bytes,
but somebody who tries to read from it will get 16 bytes.
You need to make sure that

the code which reads from the stream
won’t get upset by those extra bytes.
(For example, if

you passed it to a function that concatenates
streams, you just inserted three bytes of garbage

between the streams.)
You also need to be careful that those extra bytes don’t leak
any

sensitive information if you, say, put the memory block
on the clipboard for everyone to see.

Bonus chatter:
It appears that at some point, the kernel folks decided that
these “bonus

bytes” were more hassle than they were worth,
and now they spend extra effort remembering

not only the actual
size of the memory block but also the requested size.
When you ask, “How

big is this memory block?”
they lie and return the requested size rather than the actual size.

4/4

In other words, the free bonus bytes are no longer exposed
to applications by the kernel heap

functions.
Note, however, that
this behavior is not contractual;
future versions of Windows

may start handing out free bonus bytes again.
Note also that not all heap managers have

done the extra
work to remember the requested size,
and they will continue to hand out

bonus bytes.
Therefore,
you must continue to code defensively and assume that
bonus bytes

may exist (even if they usually don’t).
(And note that heap debugging tools may intentionally

generate “bonus bytes” to help flush out bugs.)

Double extra bonus chatter:
Note that this gotcha is not specific to Windows.

// resize a block of memory originally allocated by calloc

// and zero out the new bytes

void *crealloc(void *bytes, size_t new_size)

{

size_t old_size = malloc_size(bytes);

void *new_bytes = realloc(bytes, new_size);

if (new_bytes && new_size > old_size) {

 memset((char*)new_bytes + old_size, 0, new_size - old_size);

}
return new_bytes;

}

Virtually all heap libraries have bonus bytes.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

