
1/4

February 17, 2012

How do I find out which process has a file open?
devblogs.microsoft.com/oldnewthing/20120217-00

Raymond Chen

Classically, there was no way to find out which process has a file open.
A file object has a

reference count, and when the reference count drops
to zero, the file is closed.
But there’s

nobody keeping track of which processes own how many references.
(And that’s ignoring the

case that the reference is not coming from a
process in the first place; maybe it’s coming from

a kernel driver,
or maybe it came from a process that no longer exists but whose reference
is

being kept alive by a kernel driver that
captured the object reference.)

This falls into the category of
not keeping track of information you don’t need.
The file

system doesn’t care who has the reference to the file object.
Its job is to close the file when

the last reference goes away.

You do the same thing with your COM object reference counts.
All you care about is whether

your reference count has reached zero
(at which point it’s time to destroy the object).
If you

later discover an object leak in your process,
you don’t have a magic query
“Show me all the

people who called
 AddRef on my object”
because you never kept track of all the people who

called
 AddRef on your object.
Or even, “Here’s an object I want to destroy.
Show me all the

people who called AddRef on it
so I can destroy them
and get them to call Release .”

At least that was the story under the classical model.

Enter the
Restart Manager.

The official goal of the Restart Manager is to help make it possible to
shut down and restart

applications which are using a file you want
to update.
In order to do that, it needs to keep

track of which processes are
holding references to which files.
And it’s that database that is of

use here.
(Why is the kernel keeping track of which processes have a file open?
Because it’s

the converse of the principle of not keeping track
of information you don’t need:
Now it

needs the information!)

Here’s a simple program which takes a file name on the command line
and shows which

processes have the file open.

https://devblogs.microsoft.com/oldnewthing/20120217-00/?p=8283
http://msdn.microsoft.com/library/ff558679.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2009/02/17/9426787.aspx
http://msdn.microsoft.com/library/cc948910.aspx

2/4

#include <windows.h>

#include <RestartManager.h>

#include <stdio.h>

int __cdecl wmain(int argc, WCHAR **argv)

{

DWORD dwSession;

WCHAR szSessionKey[CCH_RM_SESSION_KEY+1] = { 0 };

DWORD dwError = RmStartSession(&dwSession, 0, szSessionKey);

wprintf(L"RmStartSession returned %d\n", dwError);

if (dwError == ERROR_SUCCESS) {

 PCWSTR pszFile = argv[1];

 dwError = RmRegisterResources(dwSession, 1, &pszFile,

 0, NULL, 0, NULL);

 wprintf(L"RmRegisterResources(%ls) returned %d\n",

 pszFile, dwError);

 if (dwError == ERROR_SUCCESS) {

 DWORD dwReason;

 UINT i;

 UINT nProcInfoNeeded;

 UINT nProcInfo = 10;

 RM_PROCESS_INFO rgpi[10];

 dwError = RmGetList(dwSession, &nProcInfoNeeded,

 &nProcInfo, rgpi, &dwReason);

 wprintf(L"RmGetList returned %d\n", dwError);

 if (dwError == ERROR_SUCCESS) {

 wprintf(L"RmGetList returned %d infos (%d needed)\n",

 nProcInfo, nProcInfoNeeded);

 for (i = 0; i < nProcInfo; i++) {

 wprintf(L"%d.ApplicationType = %d\n", i,

 rgpi[i].ApplicationType);

 wprintf(L"%d.strAppName = %ls\n", i,

 rgpi[i].strAppName);

 wprintf(L"%d.Process.dwProcessId = %d\n", i,

 rgpi[i].Process.dwProcessId);

 HANDLE hProcess = OpenProcess(PROCESS_QUERY_LIMITED_INFORMATION,

 FALSE, rgpi[i].Process.dwProcessId);

 if (hProcess) {

 FILETIME ftCreate, ftExit, ftKernel, ftUser;

 if (GetProcessTimes(hProcess, &ftCreate, &ftExit,

 &ftKernel, &ftUser) &&

 CompareFileTime(&rgpi[i].Process.ProcessStartTime,

 &ftCreate) == 0) {

 WCHAR sz[MAX_PATH];

 DWORD cch = MAX_PATH;

 if (QueryFullProcessImageNameW(hProcess, 0, sz, &cch) &&

 cch <= MAX_PATH) {

 wprintf(L" = %ls\n", sz);

 }

 }

 CloseHandle(hProcess);

 }

 }

3/4

 }

 }

 RmEndSession(dwSession);

}
return 0;

}

The first thing we do is call, no wait, even before we call
the RmStartSession function, we

have the line

WCHAR szSessionKey[CCH_RM_SESSION_KEY+1] = { 0 };

That one line of code addresses two bugs!

First is a documentation bug.
The documentation for the
 RmStartSession function doesn’t

specify
how large a buffer you need to pass for the session key.
The answer is

CCH_RM_SESSION_KEY+1 .

Second is a code bug.
The
 RmStartSession function doesn’t properly
null-terminate the

session key, even though the function
is documented as returning a null-terminated string.

To work around this bug, we pre-fill the buffer with null characters
so that whatever ends

gets written will have a null terminator
(namely, one of the null characters we placed ahead

of time).

Okay, so that’s out of the way.
The basic algorithm is simple:

1. Create a Restart Manager session.

2. Add a file resource to the session.

3. Ask for a list of all processes affected by that resource.

4. Print some information about each process.

5. Close the session.

We already mentioned that you create the session by calling
 RmStartSession .
Next, we add

a single file resource to the session by
calling RmRegisterResources .

Now the fun begins.
Getting the list of affected processes is normally a two-step
affair.
First,

you ask for the number of affected processes
(by passing 0 as the nProcInfo),
then

allocate some memory and call a second time to get the data.
But this is just a sample

program, so I’ve hard-coded a limit
of ten processes.
If more than ten processes are affected,

I just give up.
(You can see this if you ask for all the processes that
have open handles to

kernel32.dll .)

The other tricky part is mapping the RM_PROCESS_INFO
to an actual process.
Since

process IDs can be recycled,
the
 RM_PROCESS_INFO structure identifies a process
by the

combination of the process ID and the process creation time.
That combination is unique

because two processes cannot have the same
ID at the same time.
We open the handle to the

4/4

process via its ID, then confirm that the
start times match.
(If not, then
the ID refers to a

process that exited
during the
time we obtained the list and the time we actually looked at it.)

Assuming it all matches, we get the image name and print it.

And that’s all there is to enumerating all the processes that have
a particular file open.
Of

course, a more expressive interface for managing files in use
is
 IFileIsInUse ,
which I

mentioned some time ago.
That interface not only tells you the application that has the file

open
(in a friendlier format than just an executable path),
you can also use it to switch to the

application and even ask it to
close the file.
(Windows 7 first tries IFileIsInUse ,
and if

that fails, then it goes to the Restart Manager.)

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2010/08/26/10054386.aspx#10054750
http://blogs.msdn.com/b/oldnewthing/archive/2010/08/06/10046812.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

