
1/8

February 10, 2012

Fancy use of exception handling in FormatMessage leads
to repeated "discovery" of security flaw

devblogs.microsoft.com/oldnewthing/20120210-00

Raymond Chen

Every so often, somebody “discovers” an alleged
security vulnerability in the Format‐

Message function.
You can try it yourself:

#include <windows.h>

#include <stdio.h>

char buf[2048];

char extralong[128*1024];

int __cdecl main(int argc, char **argv)

{

memset(extralong, 'x', 128 * 1024 - 1);

DWORD_PTR args[] = { (DWORD_PTR)extralong };

FormatMessage(FORMAT_MESSAGE_FROM_STRING |

 FORMAT_MESSAGE_ARGUMENT_ARRAY, "%1", 0, 0,

 buf, 2048, (va_list*)args);

return 0;

}

If you run this program under the debugger and you tell it to break
on all exceptions,
then

you will find that it breaks on an access violation
trying to write to an invalid address.

eax=00060078 ebx=fffe0001 ecx=0006fa34 edx=00781000 esi=0006fa08 edi=01004330

eip=77f5b279 esp=0006f5ac ebp=0006fa1c iopl=0 nv up ei pl nz na pe cy

cs=001b ss=0023 ds=0023 es=0023 fs=0038 gs=0000 efl=00010203

ntdll!fputwc+0x14:

77f5b279 668902 mov [edx],ax ds:0023:00781000=????

Did you just find a buffer overflow security vulnerability?

The FormatMessage function was part of the original
Win32 interface,
back in the days

when you had lots of address space
(two whole gigabytes) but not a lot of RAM (12

megabytes,
or 16 if you were running Server).
The implementation of FormatMessage

reflects
this historical reality by
working hard to conserve RAM
but not worrying too much

about conserving address space.
And it takes advantage of this fancy new structured

exception handling feature.

https://devblogs.microsoft.com/oldnewthing/20120210-00/?p=8333
http://blogs.msdn.com/b/oldnewthing/archive/2003/10/10/55256.aspx

2/8

The FormatMessage uses the
reserve a bunch of address space but commit pages only as

they
are necessary pattern, illustrated in MSDN
under the topic
Reserving and Committing

Memory.
Except that the sample code on that page contains serious errors.
For example, if

the sample code encounters an exception other than
 STATUS_ACCESS_VIOLATION , it still

“handles”
it by doing nothing and returning
 EXCEPTION_EXECUTE_HANDLER .
It fails to

handle random access to the buffer
or access violations caused by DEP.
Though in the very

specific sample, it mostly works since the
protected region does only one thing, so there

aren’t many
opportunities for the other types of exceptions to occur.
(Though if you’re really

unlucky, you might get an
 STATUS_IN_PAGE_ERROR .)
But enough complaining about that

sample.

The FormatMessage
function reserves
64KB
of address space, commits the first page,
and

then calls an internal helper function whose job it is
to generate the output,
passing the start

of the 64KB block of address space as the
starting address and telling it to give up when it

reaches 64KB.
Something like this:

http://msdn.microsoft.com/library/aa366803.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2009/06/11/9725386.aspx

3/8

struct DEMANDBUFFER

{

 void *Base;

 SIZE_T Length;

};
int

PageFaultExceptionFilter(DEMANDBUFFER *Buffer,

 EXCEPTION_RECORD ExceptionRecord)

{

 int Result;

 DWORD dwLastError = GetLastError();

 // The only exception we handle is a continuable read/write

 // access violation inside our demand-commit buffer.

 if (ExceptionRecord->ExceptionFlags & EXCEPTION_NONCONTINUABLE)

 Result = EXCEPTION_CONTINUE_SEARCH;

 else if (ExceptionRecord->ExceptionCode != EXCEPTION_ACCESS_VIOLATION)

 Result = EXCEPTION_CONTINUE_SEARCH;

 else if (ExceptionRecord->NumberParameters < 2)

 Result = EXCEPTION_CONTINUE_SEARCH;

 else if (ExceptionRecord->ExceptionInformation[0] &

 ~(EXCEPTION_READ_FAULT | EXCEPTION_WRITE_FAULT))

 Result = EXCEPTION_CONTINUE_SEARCH;

 else if (ExceptionRecord->ExceptionInformation[1] -

 (ULONG_PTR)Buffer->Base >= Buffer->Length)

 Result = EXCEPTION_CONTINUE_SEARCH;

 else {

 // If the memory is already committed, then committing memory won't help!

 // (The problem is something like writing to a read-only page.)

 void *ExceptionAddress = (void*)ExceptionInformation[1];

 MEMORY_BASIC_INFORMATION Information;

 if (VirtualQuery(ExceptionAddress, &Information,

 sizeof(Information)) != sizeof(Information))

 Result = EXCEPTION_CONTINUE_SEARCH;

 else if (Information.State != MEM_RESERVE)

 Result = EXCEPTION_CONTINUE_SEARCH;

 // Okay, handle the exception by committing the page.

 // Exercise: What happens if the faulting memory access

 // spans two pages?

 else if (!VirtualAlloc(ExceptionAddress, 1, MEM_COMMIT, PAGE_READWRITE))

 Result = EXCEPTION_CONTINUE_SEARCH;

 // We successfully committed the memory - retry the operation

 else Result = EXCEPTION_CONTINUE_EXECUTION;

 }

 RestoreLastError(dwLastError);

 return Result;

}

DWORD FormatMessage(...)

{

 DWORD Result = 0;

 DWORD Error;

 DEMANDBUFFER Buffer;

 Error = InitializeDemandBuffer(&Buffer, FORMATMESSAGE_MAXIMUM_OUTPUT);

http://blogs.msdn.com/b/oldnewthing/archive/2012/02/09/10265660.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2011/04/29/10159322.aspx

4/8

 if (Error == ERROR_SUCCESS) {

 __try {

 Error = FormatMessageIntoBuffer(&Result,

 Buffer.Base, Buffer.Length, ...);

 } __except (PageFaultExceptionFilter(&Buffer,

 GetExceptionInformation()->ExceptionRecord)) {

 // never reached - we never handle the exception

 }

 }

 if (Error == ERROR_SUCCESS) {

 Error = CopyResultsOutOfBuffer(...);

 }

 DeleteDemandBuffer(&Buffer);

 if (Result == 0) {

 SetLastError(Error);

 }

 return Result;

}

The FormatMessageIntoBuffer function takes an output
buffer and a buffer size, and it

writes the result to the output buffer,
stopping when the buffer is full.
The DEMANDBUFFER

structure and the
 PageFaultExceptionHandler
work together to create the output buffer

on demand
as the FormatMessageIntoBuffer function does its work.

To make discussion easier, let’s say that the
 FormatMessage function merely took printf-

style arguments
and supported only
 FORMAT_MESSAGE_FROM_STRING |

FORMAT_MESSAGE_ALLOCATE_BUFFER .

5/8

DWORD FormatMessageFromStringPrintfAllocateBuffer(

 PWSTR *ResultBuffer,

 PCWSTR FormatString,

 ...)

{

 DWORD Result = 0;

 DWORD ResultString = NULL;

 DWORD Error;

 DEMANDBUFFER Buffer;

 va_list ap;

 va_start(ap, FormatString);

 Error = InitializeDemandBuffer(&Buffer, FORMATMESSAGE_MAXIMUM_OUTPUT);

 if (Error == ERROR_SUCCESS) {

 __try {

 SIZE_T MaxChars = Buffer.Length / sizeof(WCHAR);

 int i = _vsnwprintf((WCHAR*)Buffer.Base, MaxChars,

 FormatString, ap);

 if (i < 0 || i >= MaxChars) Error = ERROR_MORE_DATA;

 else Result = i;

 } __except (PageFaultExceptionFilter(&Buffer,

 GetExceptionInformation()->ExceptionRecord)) {

 // never reached - we never handle the exception

 }

 }

 if (Error == ERROR_SUCCESS) {

 // Exercise: Why don't we need to worry about integer overflow?

 DWORD BytesNeeded = sizeof(WCHAR) * (Result + 1);

 ResultString = (PWSTR)LocalAlloc(LMEM_FIXED, BytesNeeded);

 if (ResultBuffer) {

 // Exercise: Why CopyMemory and not StringCchCopy?

 CopyMemory(ResultString, Buffer.Base, BytesNeeded);

 } else Error = ERROR_NOT_ENOUGH_MEMORY;

 }

 DeleteDemandBuffer(&Buffer);

 if (Result == 0) {

 SetLastError(Error);

 }

 *ResultBuffer = ResultString;

 va_end(ap);

 return Result;

}

Let’s run this function in our head to see what happens if
somebody triggers the alleged

buffer overflow by calling

PWSTR ResultString;

DWORD Result = FormatMessageFromStringPrintfAllocateBuffer(

 &ResultString, L"%s", VeryLongString);

6/8

After setting up the demand buffer, we call
 _vsnwprintf
to format the output into the

demand buffer,
but telling it not to go past the buffer’s total length.
The _vsnwprintf

function parses the format
string and sees that it needs to copy VeryLongString
to the

output buffer.
Let’s say that the DEMANDBUFFER was allocated at
address 0x00780000 on a

system with 4KB pages.
At the start of the copy, the address space looks like this:

64KB

X

^ output pointer

“C” stands for a committed page, “R” stands for a reserved page,
and “X” stands for a page

that, if accessed, would be a buffer overflow.
We start copying VeryLongString into the

output buffer.
After copying 2048 characters, we fill the first committed page;
copying

character 2049 raises a page fault exception.

64KB

X

^ output pointer

This is the point at which over-eager people observe the first-chance
exception, capture the

register dump above,
and begin writing up their security vulnerability report,
cackling with

glee.
(Observe that in the register dump,
the address we are writing to is of the form

0x####1000 .)

As with all first-chance exceptions,
it goes down the exception chain.
Our custom

PageFaultExceptionFilter recognizes this
as an access violation in a page that it is

responsible for,
and the page hasn’t yet been committed, so it commits the page as
read/write

and resumes execution.

64KB

X

^ output pointer

Copying character 2049 now succeeds, as does the copying of characters
2050 through 4096.

When we hit character 4097, the cycle repeats:

7/8

64KB

X

^ output pointer

Again, the first-chance exception is sent down the chain,
our
 PageFaultExceptionFilter

recognizes this as a page it is responsible for,
and it commits the page and resumes execution.

64KB

X

^ output pointer

If you think about it, this is exactly what the memory manager does
with memory that has

been allocated but not yet accessed:
The memory is not present,
and the moment an

application tries to access it,
the not-present page fault is raised,
the memory manager

commits the page,
and then execution resumes normally.
It’s memory-on-demand, which is

one of the essential elements of
virtual memory.
What’s going on with the DEMANDBUFFER is

that we are
simulating in user mode what the memory manager does in kernel mode.
(The

difference is that while the memory manager takes committed
memory and makes it present

on demand,
the DEMANDBUFFER takes reserved address space
and commits it on demand.)

The cycle repeats 13 more times, and then we reach another interesting
part of the scenario:

64KB

X

output pointer ^

We are about to write 32768th character into the
 DEMANDBUFFER .
Once that’s done, the

buffer will be completely full.
One more byte and we will overflow the buffer.
(Not even a

wafer-thin byte will fit.)

Let’s write that last character and
cover our ears in anticipation.

64KB

X

output pointer ^

http://www.slipups.com/items/698.html

8/8

Oh noes!
Completely full!
Run for cover!

But wait.
We passed a buffer size to the
 _vsnwprintf function, remember?
We already told

it never to write more than 32768 characters.
As it’s about to write character 32769, it

realizes,
“Wait a second, this would overflow the buffer I was given.
I’ll return a failure code

instead.”

The feared write of the 32769th character never takes place.
We never write to the “X” page.

Instead, the _vnswprintf call returns that the
buffer was not large enough, which is

converted into
 ERROR_MORE_DATA and returned to the caller.

If you follow through the entire story, you see that everything
worked as it was supposed to

and no overflow took place.
The _vnswprintf function ran up to the brink of
disaster but

stopped before taking that last step.
This is hardly anything surprising; it happens whenever

the _vnswprintf function encounters a buffer
too small to hold the output.
The only

difference is that along the way, we saw a few
first-chance exceptions,
exceptions that had

nothing to do with avoiding the buffer
overflow in the first place.
They were just part of

FormatMessage ‘s
fancy buffer management.

It so happens that in Windows Vista,
the fancy buffer management technique was

abandoned, and
the code just allocates 64KB of memory up front and doesn’t
try any fancy

commit-on-demand games.
Computer memory has become plentiful enough that a

momentary allocation
of 64KB has less of an impact than it did twenty years ago,
and

performance measurements showed that the new
“Stop trying to be so clever” technique was

now about 80 times
faster than the “gotta scrimp and save every last byte of memory”

technique.

The change had more than just a performance effect.
It also removed the first-chance

exception from FormatMessage ,
which means that it no longer does that thing which

everybody
mistakes for a security vulnerability.
The good news is that nobody reports this as

a vulnerability
in Windows Vista any more.
The bad news is that people still report it as a

vulnerability
in Windows XP,
and each
time this issue comes up,
somebody (possibly me) has

to sit down and
reverify that the previous analysis is still correct,
in the specific scenario

being reported,
because who knows, maybe this time they really did find a problem.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2007/12/18/6793468.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

