
1/3

February 9, 2012

What is the effect of memory-mapped file access on
GetLastError()?

devblogs.microsoft.com/oldnewthing/20120209-00

Raymond Chen

A customer was using memory-mapped files and was looking for
information as to whether

access to the memory-mapped data
modifies the value returned by
 GetLastError .
A

member of the kernel team replied,
“No, memory-mapped I/O does not ever change the

value returned by
 GetLastError .”

That answer is simultaneously correct and wrong,
a case of
looking at the world through

kernel-colored glasses.

While it’s true that the kernel does not ever change the value
returned by
 GetLastError ,

it’s also the case that
you might change it.

If you set up an exception handler, then your
exception handler might perform operations

that affect
the last-error code, and those changes will be visible
after the exception handler

returns.
(This applies to all exception handlers and filters,
not just ones related to memory-

mapped files.)

If you intend to return
 EXCEPTION_CONTINUE_EXECUTION
because you handled the

exception,
then you probably should make sure to leave the last-error
code the way you found

it.
Otherwise, the code that you interrupted and then resumed will have had its
last-error

code changed asynchronously.
You just
sabotaged it from above.

https://devblogs.microsoft.com/oldnewthing/20120209-00/?p=8343
http://blogs.msdn.com/b/oldnewthing/archive/2011/05/12/10163578.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2011/02/10/10127054.aspx

2/3

// Code in italics is wrong

LONG ExceptionFilter(LPEXCEPTION_POINTERS ExceptionPointers)

{

if (IsAnExceptionICanRepair(ExceptionPointers)) {

 RepairException(ExceptionPointers);

 // fixed up error; continuing

 return EXCEPTION_CONTINUE_EXECUTION;

}
if (IsAnExceptionICanHandle(ExceptionPointers)) {

 // We cannot repair it, but we can handle it.

 return EXCEPTION_EXECUTE_HANDLER;

}
// Not our exception. Keep looking.

return EXCEPTION_CONTINUE_SEARCH;

}

If the IsAnExceptionICanRepair function
or
 RepairException function
does anything

that affects the last-error code,
then when the exception filter is executed for a repairable

exception, the last-error code is magically changed without the
mainline code’s knowledge.

All the mainline code did was execute stuff normally, and somehow
during a memory access

or a floating point operation or some other
seemingly-harmless action, the last-error code

spontaneously changed!

If you are going to continue execution at the point the exception was
raised, then you need to

“put things back the way you found them”
(except of course for the part where you repair the

exception itself).

LONG ExceptionFilter(LPEXCEPTION_POINTERS ExceptionPointers)

{

PreserveLastError preserveLastError;

if (IsAnExceptionICanRepair(ExceptionPointers)) {

 RepairException(ExceptionPointers);

 // fixed up error; continuing

 return EXCEPTION_CONTINUE_EXECUTION;

}
if (IsAnExceptionICanHandle(ExceptionPointers)) {

 // We cannot repair it, but we can handle it.

 return EXCEPTION_EXECUTE_HANDLER;

}
// Not our exception. Keep looking.

return EXCEPTION_CONTINUE_SEARCH;

}

Exercise:
Why isn’t it important to restore the last error code if
you return

EXCEPTION_EXECUTE_HANDLER ?

Exercise:
Is it important to restore the last error code if you return

EXCEPTION_CONTINUE_SEARCH ?

Raymond Chen

http://blogs.msdn.com/b/oldnewthing/archive/2011/04/29/10159322.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

3/3

Follow

