
1/2

February 8, 2012

The path-searching algorithm is not a backtracking
algorithm

devblogs.microsoft.com/oldnewthing/20120208-00

Raymond Chen

Suppose your PATH environment variable looks like this:

C:\dir1;\\server\share;C:\dir2

Suppose that you call LoadLibrary("foo.dll")
intending to load the library at

C:\dir2\foo.dll .
If the network server is down, the LoadLibrary call
will fail.
Why

doesn’t it just skip the bad directory in the PATH and
continue searching?

Suppose the LoadLibrary function skipped the bad
network directory and kept searching.

Suppose that the code which called
 LoadLibrary("foo.dll") was really after the file

\\server\share\foo.dll .
By taking the server down, you have tricked the LoadLibrary

function into loading c:\dir2\foo.dll instead.
(And maybe that was your DLL planting

attack:
If you can convince the system to reject all the versions on the
 PATH by some means,

you can then get LoadLibrary
to look in the current directory, which is where you put your

attack
version of foo.dll .)

This can manifest itself in very strange ways if the two
copies of foo.dll are not identical,

because the program is now running with a version of foo.dll
it was not designed to use.

“My program works okay during the day, but it starts returning
bad data when I try to run

between midnight and 3am.”
Reason:
The server is taken down for maintenance every night,

so the program ends up running with the version in
 c:\dir2\foo.dll , which happens to

be an incompatible
version of the file.

When the LoadLibrary function
is unable to contact \\server\share\foo.dll ,
it

doesn’t know whether it’s in the
“don’t worry, I wasn’t expecting the file to be there anyway”

case or in the
“I was hoping to get that version of the file,
don’t substitute any bogus ones”

case.
So it plays it safe and assumes it’s in the
“don’t substitute any bogus ones” and fails the

call.
The program can then perform whatever recovery it deems appropriate
when it cannot

load its precious foo.dll file.

https://devblogs.microsoft.com/oldnewthing/20120208-00/?p=8353

2/2

Now consider the case where there is also
a c:\dir1\foo.dll file,
but it’s corrupted.
If you

do a LoadLibrary("foo.dll") ,
the call will fail with the error
 ERROR_BAD_EXE_FORMAT

because it found the C:\dir1\foo.dll file,
determined that it was corrupted, and gave up.

It doesn’t continue searching the path for a better version.
The path-searching algorithm is

not a backtracking algorithm.
Once a file is found, the algorithm commits to trying to load

that file (a “cut” in logic programming parlance),
and if it fails, it doesn’t backtrack and

return
to a previous state to try something else.

Discussion:
Why does the LoadLibrary search algorithm
continue if an invalid directory

or drive letter is put on the PATH?

Vaguely related chatter:
No backtracking, Part One

Raymond Chen

Follow

http://blogs.msdn.com/b/ericlippert/archive/2010/10/04/no-backtracking-part-one.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

