
1/3

January 20, 2012

How do FILE_FLAG_SEQUENTIAL_SCAN and
FILE_FLAG_RANDOM_ACCESS affect how the operating
system treats my file?

devblogs.microsoft.com/oldnewthing/20120120-00

Raymond Chen

There are two flags you can pass to the CreateFile function to provide hints regarding

your program’s file access pattern. What happens if you pass either of them, or neither?

Note that the following description is not contractual. It’s just an explanation of the

current heuristics (where “current” means “Windows 7”). These heuristics have changed at

each version of Windows, so consider this information as a tip to help you choose an

appropriate access pattern flag in your program, not a guarantee that the cache manager will

behave in a specific way if you do a specific thing.

If you pass the FILE_FLAG_SEQUENTIAL_SCAN flag, then the cache manager alters its

behavior in two ways: First, the amount of prefetch is doubled compared to what it would

have been if you hadn’t passed the flag. Second, the cache manager marks as available for re-

use those cache pages which lie entirely behind the current file pointer (assuming there are

no other applications using the file). After all, by saying that you are accessing the file

sequentially, you’re promising that the file pointer will always move forward.

At the opposite extreme is FILE_FLAG_RANDOM_ACCESS . In the random access case, the

cache manager performs no prefetching, and it does not aggressively evict pages that lie

behind the file pointer. Those pages (as well as the pages that lie ahead of the file pointer

which you already read from or wrote to) will age out of the cache according to the usual

most-recently-used policy, which means that heavy random reads against a file will not

pollute the cache (the new pages will replace the old ones).

In between is the case where you pass neither flag.

If you pass neither flag, then the cache manager tries to detect your program’s file access

pattern. This is where things get weird.

https://devblogs.microsoft.com/oldnewthing/20120120-00/?p=8493

2/3

If you issue a read that begins where the previous read left off, then the cache manager

performs some prefetching, but not as much as if you had passed FILE_FLAG_

SEQUENTIAL_SCAN . If sequential access is detected, then pages behind the file pointer are

also evicted from the cache. If you issue around six reads in a row, each of which begins

where the previous one left off, then the cache manager switches to FILE_FLAG_

SEQUENTIAL_SCAN behavior for your file, but once you issue a read that no longer begins

where the previous read left off, the cache manager revokes your temporary FILE_FLAG_

SEQUENTIAL_SCAN status.

If your reads are not sequential, but they still follow a pattern where the file offset changes by

the same amount between each operation (for example, you seek to position 100,000 and

read some data, then seek to position 150,000 and read some data, then seek to position

200,000 and read some data), then the cache manager will use that pattern to predict the

next read. In the above example, the cache manager will predict that your next read will

begin at position 250,000. (This prediction works for decreasing offsets, too!) As with auto-

detected sequential scans, the prediction stops as soon as you break the pattern.

Since people like charts, here’s a summary of the above in tabular form:

Access pattern Prefetch Evict-behind

Explicit random No No

Explicit sequential Yes (2×) Yes

Autodetected sequential Yes Yes

Autodetected very sequential Yes (2×) Yes

Autodetected linear Yes ?

None No ?

There are some question marks in the above table where I’m not sure exactly what the

answer is.

Note: These cache hints apply only if you use ReadFile (or moral equivalents). Memory-

mapped file access does not go through the cache manager, and consequently these cache

hints have no effect.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

3/3

