
1/3

January 18, 2010

It's fine to rename a function in your DEF file, but when
you do, you have to link to that function by its new name

devblogs.microsoft.com/oldnewthing/20100118-00

Raymond Chen

Jeffrey Riaboy
asks why,
if he renames a function in his DEF file,
attempts to link to the

function by its old name fail.

Well, um, yeah, because you renamed it.

Let’s take the situation apart a bit;
maybe it’ll make more sense.
I’m going to ignore a lot of

details
(dllimport/dllexport ,
calling conventions)
since they are not relevant to the

discussion
and would end up just being distracting.
I’m also going to assume we are running

on an x86-class machine,
just for concreteness.
The same discussion works for other

platforms; you just have to
adjust the conventions accordingly.

First, here is some source code for a DLL,
let’s call it FRED.DLL :

int Dabba()

{

 return 0;

}

int Doo()

{

 return 1;

}

And here is the DEF file for FRED.DLL :

EXPORTS

Yabba=Dabba

Dabba=Doo

When you compile this DLL, the result will be something like this:

FRED.DLL:

Yabba -> return 0;

Dabba -> return 1;

https://devblogs.microsoft.com/oldnewthing/20100118-00/?p=15243
http://www.castledragmire.com/
http://blogs.msdn.com/oldnewthing/pages/407234.aspx#759387

2/3

The function exported as Yabba returns 0
because the DEF file said,
“I want to export a

function with the exported name Yabba ;
when somebody calls the function, I want control

to go to the
function I called Dabba internally.”

Similarly, the function exported as Dabba returns 1
because the DEF file said,
“I want to

export a function with the exported name Dabba ;
when somebody calls the function, I want

control to go to the
function I called Doo internally.”

Remember that symbolic information disappears during linking.
The names of the functions

and variables in the original source
code are not stored anywhere in the DLL.
The names

exist only so that the linker can resolve symbolic
references between object files.
Once that’s

done, the names are discarded: Their work is done.
(See
The classical model for linking
for a

discussion of how linking works under the classical model.)

Exported functions are also a mapping between labels and functions,
but this mapping is not

used when linking the DLL;
rather, it is just a table the linker produces under the direction
of

your DEF file.
To reduce confusion for the programmer writing the DLL,
the name in the

exported function table usually matches the name
in the object files, but that is merely a

convention.
An entry in the export table that doesn’t perform renaming is
just a shorthand

for “I would like the exported name for this function
to be the same as its internal name.”
It’s

a convenient typing-saver.

By analogy,
Microsoft employees have one email address for use inside the company,
and
a

different email address for use outside the company.
Some employees choose to have their

external email address be the same
as their internal one,
but that is hardly a requirement.

Meanwhile, the import library for our DLL looks something like this:

FRED.LIB:

__imp__Yabba -> FRED.Yabba

__imp__Dabba -> FRED.Dabba

_Yabba@0 -> jmp [__imp__Yabba]

_Dabba@0 -> jmp [__imp__Dabba]

As we saw before,
each exported function
results in two symbols in the import library,
one

with __imp_ prepended to the exported name,
which represents the import table entry,
and

one containing a stub function for the benefit of a naïve
compiler.

Now let’s look at a program that wants to call some functions from
 FRED.DLL :

int Flintstone()

{

Yabba();

Dabba();

Doo();

}

http://blogs.msdn.com/oldnewthing/archive/2009/10/12/9905953.aspx
http://blogs.msdn.com/oldnewthing/archive/2008/10/23/9011948.aspx
http://blogs.msdn.com/oldnewthing/archive/2006/07/27/679634.aspx
http://blogs.msdn.com/oldnewthing/archive/2006/07/20/672695.aspx
http://blogs.msdn.com/oldnewthing/archive/2006/07/21/673830.aspx

3/3

Let’s say that these functions were not declared as
 dllimport , just for the sake of

concreteness.
(The discussion works the same if they were declared as
 dllimport , making

the appropriate changes to the
symbol names.)
When the linker goes to resolve the call to

Yabba@0 ,
it will find the entry in FRED.DLL that says,
“I’ve got a function called

Yabba@0 ; the code for it
is the single instruction jmp [__imp__Yabba] .”
When the

program calls this function, the jmp
instruction will jump through the import table entry

for
 FRED.Yabba ,
which will wind up at the function in FRED.DLL
exported under the name

Yabba .
If we look inside FRED.DLL , we see that this
is a function that returns 0
(because

it is the function which was called Dabba
in the original source code, although that

information was lost
a long time ago).

Similarly, when the linker resolves the call to Dabba@0 ,
it finds the entry in FRED.DLL

which pulls in the
one-line stub function which jumps through the import table
entry for

Dabba@0 .
This leads to a function that returns 1 ,
a function which was called Doo
in the

original source code.

However, that last call to Doo
raises a linker error because it cannot find a function called

Doo in the FRED.LIB import library.
That’s just the internal name for a function in the

source code
for FRED.DLL ,
a name which was lost during linking.
If you want to call the

function which had been called Doo
in the original source code,
you have to import it by its

new name,
 Dabba .

In Jeffrey’s case, he took a function which was internally
referred to by a decorated name
(?

Dispose@MyClass@@QAEAAV1@XZ)
and renaming it to an undecorated name
(MC_Dispose).

But when other modules tried to use the library, they got the error
saying that
“?

Dispose@MyClass@@QAEAAV1@XZ” is not found.
Which is correct:
 ?

Dispose@MyClass@@QAEAAV1@XZ
was not found because it no longer exists under that name.

You renamed it to MC_Dispose .
Those modules need to link to the function
 MC_Dispose if

they want to call the
function
“formerly known as ?Dispose@MyClass@@QAEAAV1@XZ”.

Actually, Jeffrey’s situation is more complicated than I described
it because
 ?

Dispose@MyClass@@QAEAAV1@XZ
undecorates to
 public: class MyClass & __thiscall

MyClass::Dispose(void) ;
this is a method not a static function.
I don’t believe there’s a

way to override the name decoration
algorithm for instance methods;
the compiler is always

going to generate a reference to
 ?Dispose@MyClass@@QAEAAV1@XZ .
So renaming the export

doesn’t buy you anything because you don’t
control the name on the import side.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

