
1/2

December 23, 2009

Why is it possible to destroy a critical section while it is
in use?

devblogs.microsoft.com/oldnewthing/20091223-00

Raymond Chen

Some time back,
Stu wondered
why it is possible to destroy a critical section while it is in use.

Well, there’s nothing stopping you from creating a file that contains
these lines:

#include <windows.h>

int __cdecl main(int, char**)

{

 CRITICAL_SECTION cs;

 InitializeCriticalSection(&cs);

 EnterCriticalSection(&cs);

 DeleteCriticalSection(&cs);

 return 0;

}

and then telling your compiler to turn it into a program.
It’s not like a bolt of lightning is

going to come out of the sky
and zap you before you hit the Enter key.

So obviously, it’s possible.

On the other hand, it’s a bug,
just like closing a handle to a file that another thread is
reading

from,
or like closing an event handle that another thread is waiting on.

Critical sections are one of those low-level I sure hope you know what
you’re doing because

I’m not going to help you if you mess up
pieces of functionality.
If you use them incorrectly,

then you will suffer the consequences,
the same as if you tried to free memory twice
or write

to memory after freeing it
or cast a Gdiplus::Color* to a CComBSTR* .

Are there any legitimate cases where you would delete a critical
section while it is owned?
I

sure can’t think of any.

If there were a legitimate case for deleting a critical section
while it is owned, what could it

be?
Well, it can’t be owned by the thread doing the deleting,
because that would imply that

you took it in order to prevent
somebody else from entering it (while you deleted it),
but that

just creates another race condition:
If you tinker the timing, then you can create this

https://devblogs.microsoft.com/oldnewthing/20091223-00/?p=15563
http://blogs.msdn.com/oldnewthing/archive/2006/12/11/1259599.aspx#1263540

2/2

scenario:
That other thread gets
pre-empted just as it was about to execute the first

instruction of the EnterCriticalSection function.
Meanwhile, the destroying thread

enters the critical section,
does whatever other stuff it wants to do,
and then deletes the

critical section.
That other thread finally gets a chance to run and is now
attempting to enter

a deleted critical section, which is clearly
not legal.

Okay, so if there were a legitimate case, it would have to be
deleting a critical section owned

by some other thread.
Maybe that other thread enters the critical section, and then
signals

the main thread to delete the critical section.
Why would it do that? Who knows.
Maybe it

wants to make sure only one thread signals
the main thread.
But you still have the same

problem as with the previous case:
You entered the critical section because you wanted to

prevent
a third thread from entering the protected region,
but that third thread might have

been pre-empted just as it
transferred control to the first instruction of

EnterCriticalSection ,
and when that third thread finally gets some CPU time,
it

proceeds to enter a deleted critical section.

So I can’t think of a legitimate reason for deleting a critical
section while it’s in use.
Maybe

there’s a flaw in my logic.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

