
1/2

December 18, 2009

I got an array with plenty of nuthin'
devblogs.microsoft.com/oldnewthing/20091218-00

Raymond Chen

A customer reported a memory leak in the function
 PropVariantClear :

We found the following memory leak in the function
 PropVariantClear .
Please fix it
immediately because it causes our program to
run out of memory.

If the PROPVARIANT ‘s type is VT_ARRAY ,
then the corresponding SAFEARRAY is leaked
and not
cleaned up.

SAFEARRAY* psa = SafeArrayCreateVector(VT_UNKNOWN, 0, 1);

PROPVARIANT v;

v.vt = VT_ARRAY;

v.parray = psa;

PropVariantClear(&v);

// The psa is leaked

Right now, we are temporarily working around this in our program
by inserting code before all
calls to
 PropVariantClear to free the SAFEARRAY ,
but this is clearly an unsatisfactory
solution
because it will merely result in double-free bugs once you fix
the bug.
Please give this
defect your highest priority as it is holding up
deployment of our system.

The VT_ARRAY value is not a variant type in and of itself;
it is a type modifier.
There are

other type modifiers, such as
 VT_VECTOR
and VT_BYREF .
The thing about modifiers is that

they need to modify something.

The line
 v.vt = VT_ARRAY is incorrect.
You have to say what you have a safe array of.
In
this case, you want v.vt = VT_ARRAY | VT_UNKNOWN .
Once you change that, you’ll find
the memory leak is fixed.

The customer didn’t believe this explanation.

https://devblogs.microsoft.com/oldnewthing/20091218-00/?p=15623

2/2

I find this doubtful for several reasons.

1. While this would explain why the
 IUnknown s in the SAFEARRAY
are not released,
it
doesn’t explain why the SAFEARRAY itself is leaked.

2. The SAFEARRAY already contains this information,
so it should already know that
destroying it entails releasing
the IUnknown pointers.

3. If I manually call SafeArrayDestroy ,
then the IUnknown s are correctly
released,
confirming point 2.

4. The function SafeArrayDestroy is never called;
that is the root cause of the problem.

The customer’s mental model of PropVariantDestroy
appeared to be that it should go

something like this:

if (pvt->vt & VT_ARRAY) {

switch (pvt->vt & VT_TYPEMASK) {

...

case VT_UNKNOWN:

 ... release the IUnknowns in the SAFEARRAY...

 break;

...

}
InternalFree(pvt->psa->pvData);

InternalFree(pvt->psa);

return S_OK;

}

In fact what’s really going on is that the value of
 VT_ARRAY is interpreted as
 VT_ARRAY |

VT_EMPTY ,
because (1) VT_ARRAY is a modifier,
so it has to modify something, and (2) the

numeric value of zero happens to be equal to VT_EMPTY .
In other words, you told OLE

automation that your PROPVARIANT
holds a SAFEARRAY filled with VT_EMPTY .

It also happens that a SAFEARRAY of VT_EMPTY
is illegal.
Only certain types can be placed

in a SAFEARRAY ,
and VT_EMPTY is not one of them.

The call to PropVariantClear was returning the
error
 DISP_E_BADVARTYPE .
It was

performing parameter validation and rejecting the property
variant as invalid,
because you

can’t have an array of nothing.
The customer’s response to this explanation was very terse.

Tx. Interesting.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

