
1/2

December 4, 2009

When there is a long line of people waiting for a shared
resource, you want to investigate the person who is
hogging the resource, not the people waiting in line for it

devblogs.microsoft.com/oldnewthing/20091204-00

Raymond Chen

If you see a long line of people waiting for a phone booth
(note: this analogy assumes you

remember how phone booths work),
and you want to understand the reason for the long line,

do you

Go to a person waiting in line and begin your investigation there?

Go to the phone booth (and the person inside)
and begin your investigation there?

If there is a long line of people waiting for a single resource,
a resource that there is not

normally a long line for,
you would probably look at the person who is using the resource
to

see if, for example, they are a chatterbox who will be on
the phone for an hour, or if the

phone is being repaired
or is otherwise not working properly.

Similarly, if you find that in your 20-thread program, 17 of
them are waiting for a single

critical section,
then you probably want to investigate the thread that owns the
critical section

to see whether (and why) it isn’t releasing it.

When testing a program, I encountered a hang that occurred
after doing X.
There are a few
threads stuck in LoadLibrary ,
and about 40 threads stuck here:

ntdll!KiFastSystemCallRet

ntdll!ZwWaitForSingleObject+0xc

ntdll!RtlpWaitForCriticalSection+0x132

ntdll!RtlEnterCriticalSection+0x46

ntdll!_LdrpInitialize+0xf0

ntdll!KiUserApcDispatcher+0x7

Here is one of the threads that is stuck in
 LoadLibrary [stack trace deleted].
You seem to be
one of the people who work on the
component that is trying to load the library.
Can you
investigate why the program is stuck?

https://devblogs.microsoft.com/oldnewthing/20091204-00/?p=15783

2/2

This person picked one of the people waiting in line
and decided that they were the ones

responsible for
the problem.
But if course, that person waiting in line is just
another victim of

the person at the head of the line
who is hogging the critical section.
In this case, the critical

section is the infamous
loader lock.
That it’s the loader lock is obvious from the symptoms:

What critical section
does every thread require when it starts up?
What critical section does

LoadLibrary require?

You can use the !critsec debugger command to
identify the current owner of the loader

lock,
and then start studying that thread to see what the hold-up is.

Note that I’m not saying that the thread that owns the resource
is necessarily the culprit.
The

problem could be in the resource itself,
or it could be in
the pattern of usage associated with

that resource.
But starting your investigation
with the owner of the resource is a good bet,

because most of the time, the reason for the long wait queue
is that the current owner of the

resource isn’t releasing it.

Raymond Chen

Follow

http://blogs.msdn.com/oldnewthing/archive/2007/09/04/4731478.aspx
http://blogs.msdn.com/oldnewthing/archive/2006/12/12/1266392.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

