
1/2

November 27, 2009

Caches are nice, but they confuse memory leak detection
tools

devblogs.microsoft.com/oldnewthing/20091127-00

Raymond Chen

Knowledge Base article 139071 has the technically correct but easily misinterpreted title FIX:

OLE Automation BSTR caching will cause memory leak sources in Windows 2000. The title

is misleading because it makes you think that Oh, this is a fix for a memory leak in OLE

Automation, but that’s not what it is.
The BSTR is the string type used by OLE Automation,

and since strings are used a lot, OLE Automation maintains a cache of recently-freed strings

which it can re-use when somebody allocates a new one. Caches are nice (though you need to

make sure you have a good replacement policy), but they confuse memory leak detection

tools, because the memory leak detection tool will not be able to match up the allocator with

the deallocator. What the memory leak detection tool sees is not the creation and freeing of

strings but rather the allocation and deallocation of memory. And if there is a string cache

(say, of just one entry, for simplicity), what the memory leak detection tool sees is only a part

of the real story.

Program (line 1): Creates string 1.

String manager: Allocates memory block A for string 1.

Program (line 2): Frees string 1.

String manager: Puts memory block A into cache.

Program (line 3): Creates string 2.

String manager: Re-uses memory block A for string 2.

Program (line 4): Creates string 3.

String manager: Allocates memory block B for string 3.

Program (line 5): Frees string 3.

String manager: Puts memory block B into cache.

Program (line 6): Frees string 2.

String manager: Deallocates memory block A since there is no room in the cache.

Your program sees only the lines marked Program:, and the memory leak detection tool sees

only the underlined part. As a result, the memory leak detection tool sees a warped view of

the program’s string usage:

Line 1 of your program allocates memory block A.

https://devblogs.microsoft.com/oldnewthing/20091127-00/?p=15883
http://support.microsoft.com/kb/139071
http://blogs.msdn.com/oldnewthing/archive/2006/05/02/588350.aspx

2/2

Line 4 of your program allocates memory block B.

Line 6 of your program deallocates memory block A.

Notice that the memory leak detection tool thinks that line 6 freed the memory allocated by

line 1, even though the two lines of the program are unrelated. Line 6 is freeing string 2, and

line 1 is creating string 1!
Notice also that the memory leak detection tool will report a

memory leak, because it sees that you allocated two memory blocks but deallocated only one

of them. The memory leak detection tool will say, “Memory allocated at line 4 is never freed.”

And you stare at line 4 of your program and insist that the memory leak detection tool is on

crack because there, you freed it right at the very next line! You chalk this up as “Stupid

memory leak detection tool, it has all these useless false positives.”
Even worse: Suppose

somebody deletes line 6 of your program, thereby introducing a genuine memory leak. Now

the memory leak detection tool will report two leaks:

Memory allocated at line 1 is never freed.

Memory allocated at line 4 is never freed.

You already marked the second report as bogus during your last round of investigation. Now

you look at the first report, and decide that it too is bogus; I mean look, we free the string

right there at line 2!
Result: A memory leak is introduced, the memory leak detection tool

finds it, but you discard it as another bug in the memory leak detection tool.
When you’re

doing memory leak detection, it helps to disable your caches. That way, the high-level object

creation and destruction performed in your program maps more directly to the low-level

memory allocation and deallocation functions tracked by the memory leak detection tool. In

our example, if there were no cache, then every Create string would map directly to an

Allocate memory call, and every Free string would map directly to a Deallocate memory call.

What KB article 139071 is trying to say is FIX: OLE Automation BSTR cache cannot be

disabled in Windows 2000. Windows XP already contains support for the OANOCACHE

environment variable, which disables the BSTR cache so you can investigate those BSTR

leaks more effectively. The hotfix adds support for OANOCACHE to Windows 2000.
Bonus

chatter: Why do we have BSTR anyway? Why not just use null-terminated strings

everywhere?

The BSTR data type was introduced by Visual Basic. They couldn’t use null-terminated

strings because Basic permits nulls to be embedded in strings. Whereas Win32 is based on

the K&R C way of doing things, OLE automation is based on the Basic way of doing

things.

Raymond Chen

Follow

http://blogs.msdn.com/larryosterman/archive/2004/09/28/235304.aspx
http://blogs.msdn.com/oldnewthing/archive/2004/12/22/329884.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

