
1/4

November 20, 2009

The difference between assignment and attachment with
ATL smart pointers

devblogs.microsoft.com/oldnewthing/20091120-00

Raymond Chen

Last time,
I presented a puzzle regarding a memory leak.
Here’s the relevant code fragment:

CComPtr<IStream> pMemoryStream;

CComPtr<IXmlReader> pReader;

UINT nDepth = 0;

//Open read-only input stream

pMemoryStream = ::SHCreateMemStream(utf8Xml, cbUtf8Xml);

The problem here is assigning the return value of
 SHCreateMemStream to a smart pointer

instead of attaching it.

The SHCreateMemStream function creates a memory stream
and returns a pointer to it.

That pointer has a reference count of one,
in accordance with COM rules that a function

which produces a reference calls AddRef,
and the responsibility is placed upon the recipient

to call Release.
The assignment operator for CComPtr<T> is a copy operation:
It AddRef s

the pointer and saves it.
You’re still on the hook for the reference count of the original

pointer.

https://devblogs.microsoft.com/oldnewthing/20091120-00/?p=15953
http://blogs.msdn.com/oldnewthing/archive/2009/11/19/9924950.aspx
http://msdn.microsoft.com/en-us/library/ms692481.aspx

2/4

ATLINLINE ATLAPI_(IUnknown*) AtlComPtrAssign(IUnknown** pp, IUnknown* lp)

{

 if (lp != NULL)

 lp->AddRef();

 if (*pp)

 (*pp)->Release();

 *pp = lp;

 return lp;

}

template <class T>

class CComPtr

{

public:

 ...

 T* operator=(T* lp)

 {

 return (T*)AtlComPtrAssign((IUnknown**)&p, lp);

 }

Observe that assigning a T* to a CComPtr<T>
AddRefs the incoming pointer
and

Release s the old pointer (if any).
When the CComPtr<T> is destructed, it will release
the

pointer, undoing the AddRef that was performed by
the assignment operator.
In other

words, assignment followed by destruction has a net effect
of zero on the pointer you

assigned.
The operation behaves like a copy.

Another way of putting a pointer into a CComPtr<T>
is with the Attach operator.
This is a

transfer operation:

 void Attach(T* p2)

 {

 if (p)

 p->Release();

 p = p2;

 }

Observe that there is no AddRef here.
When the CComPtr<T> is destructed,
it will perform

the Release ,
which doesn’t undo any operation performed by the Attach .
Instead, it

releases the reference count held by the original pointer
you attached.

Let’s put this in a table, since people seem to like tables:

Operation Behavior Semantics

Attach() Takes ownership Transfer semantics

operator=() Creates a new reference Copy semantics

http://blogs.msdn.com/oldnewthing/archive/2004/04/06/108395.aspx

3/4

You use the Attach method when you want to assume
responsibility for releasing the

pointer (ownership transfer).
You use the assignment operator when you want the original

pointer
to continue to be responsible for its own release (no ownership transfer).

There is also a Detach method which is the opposite of
 Attach :
Detaching a pointer from

the CComPtr<T>
means “I am taking over responsibility for releasing this pointer.”
The

CComPtr<T> gives you its pointer and then forgets
about it; you’re now on your own.

The memory leak in the code fragment above occurs because the
assignment operator has

copy semantics, but we wanted transfer
semantics,
since we want the smart pointer to take

the responsibility for
releasing the pointer when it is destructed.

pMemoryStream.Attach(::SHCreateMemStream(utf8Xml, cbUtf8Xml));

The CComPtr<T>::operator=(T*) method
is definitely one of the more dangerous

methods in the
 CComPtr<T> repertoire,
because it’s so easy to assign a pointer to a smart

pointer
without giving it a moment’s thought.
(Another dangerous method is the
 T**

CComPtr<T>::operator&() ,
but at least that has an assertion to try to catch the bad usages.

Even nastier is
the secret QI’ing assignment operator.)
I have to say that there is merit to
Ben

Hutchings’ recommendation simply not to allow a simple pointer
to be assigned to a smart

pointer, precisely because the semantics are
easily misunderstood.
(The boost library, for

example, follows Ben’s recommendation.)

Here’s another exercise based on what you’ve learned:

http://blogs.msdn.com/jaredpar/archive/2009/11/04/type-safety-issue-when-assigning-ccomptr-t-instances.aspx
http://blogs.msdn.com/oldnewthing/archive/2004/04/06/108395.aspx#108407

4/4

Application Verifier told us that we have a memory leak,
and we traced it back to the
function
GetTextAsInteger .

BSTR GetInnerText(IXMLDOMNode *node)

{

 BSTR bstrText = NULL;

 node->get_text(&bstrText);

 return bstrText;

}

DWORD GetTextAsInteger(IXMLDOMNode *node)

{

 DWORD value = 0;

 CComVariant innerText = GetInnerText(node);

 hr = VariantChangeType(&innerText, &innerText, 0, VT_UI4);

 if (SUCCEEDED(hr))

 {

 value = V_UI4(&innerText);

 }

 return value;

}

Obviously, the problem is that we passed the same input and output
pointers to
VariantChangeType ,
causing the output integer to overwrite the input BSTR ,
resulting in

the leak of the BSTR .
But when we fixed the function, we still got the leak:

DWORD GetTextAsInteger(IXMLDOMNode *node)

{

 DWORD value = 0;

 CComVariant innerText = GetInnerText(node);

 CComVariant textAsValue;

 hr = VariantChangeType(&innerText, &textAsValue, 0, VT_UI4);

 if (SUCCEEDED(hr))

 {

 value = V_UI4(&textAsValue);

 }

 return value;

}

Is there a leak in the VariantChangeType function itself?

Hint: It is in fact explicitly documented that the output parameter
to VariantChangeType

can be equal to the input parameter,
which results in an in-place conversion.
There was

nothing wrong with the original call to
 VariantChangeType .

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

