
1/3

November 13, 2009

You thought reasoning about signals was bad, reasoning
about a total breakdown of normal functioning is even
worse

devblogs.microsoft.com/oldnewthing/20091113-00

Raymond Chen

A customer came to the Windows team with a question, the sort of question which on its face

seems somewhat strange, which is itself a sign that the question is merely the tip of a much

more dangerous iceberg.

Under what circumstances will the GetEnvironmentVariable function hang?

This is kind of an open-ended question. I mean, for example, somebody might sneak in and

call SuspendThread on your thread while GetEnvironmentVariable is running, which

will look like a hang because the call never completes because the thread is frozen.

But the real question for the customer is, “What sort of problem are you seeing that is

manifesting itself in an apparent hang in the GetEnvironmentVariable function?”

The customer was kind enough to elaborate.

We have a global unhandled exception filter in our application so we can log all failures. After
we finish logging, we call ExitProcess , but we find that the application never actually
exits. If we connect a debugger to the stuck application, we see it hung in
GetEnvironmentVariable .

Your gut response should be, “Holy cow, I’m surprised you even got that far!”

This isn’t one of those global unhandled exception filters that got installed because your

program plays some really clever game with exceptions, No, this is an “Oh no, my program

just crashed and I want to log it” exception handler. In other words, when this exception

handler “handles” an exception, it’s because your program has encountered some sort of

serious internal programming error for which the program did not know how to recover. We

saw earlier that you can’t do much in a signal handler because you might have interrupted a

block of code which was in the middle of updating some data structures, leaving them

https://devblogs.microsoft.com/oldnewthing/20091113-00/?p=16043
https://devblogs.microsoft.com/oldnewthing/20080728-00/?p=21453

2/3

momentarily inconsistent. But this exception filter is in an even worse state: Not only is there

a good chance that the program is in the middle of updating something and left it in an

inconsistent state, you are in fact guaranteed that the system is in a corrupted state.

Why is this a guarantee? Because if the system were in a consistent state, you wouldn’t have

crashed!

Programming is about establishing invariants, perturbing them, and then re-establishing

them. It is a game of stepping-stone from one island of consistency to another. But the code

that does the perturbing and the re-establishing assumes that it’s starting from a consistent

state to begin with. For example, a function that removes a node from a doubly-linked list

manipulates some backward and forward link pointers (temporarily violating the linked list

invariant), and then when it’s finished, the linked list is back to a consistent state. But this

code assumes that the linked list is not corrupted to begin with!

Let’s look again at that call to ExitProcess . That’s going to detach all the DLLs, calling

each DLL’s DllMain with the DLL_PROCESS_DETACH notification. But of course, those

DllMain are going to assume that the data structures are intact and nothing is corrupted.

On the other hand, you know for a fact that these prerequisites are not met—the program

crashed precisely because something is corrupted. One DLL might walk a linked list—but you

might have crashed because that linked list is corrupted. Another DLL might try to delete a

critical section—but you might have crashed because the data structure containing the critical

section is corrupted.

Heck, the crash might have been inside somebody’s DLL_PROCESS_DETACH handler to begin

with, for all you know.

“Yeah, but the documentation for TerminateProcess says that it does not clean up shared

memory.”

Well, it depends on what you mean by clean up. The reference count on the shared memory

is properly decremented when the handle is automatically closed as part of process cleanup,

and the shared memory will be properly freed once there are no more references to it. It is

not cleaned up in the sense of “corruption is repaired”—but of course the operating system

can’t do that because it doesn’t know what the semantics of your shared memory block are.

But this is hardly anything to get concerned about because your program doesn’t know how

to un-corrupt the data either.

“It also says that DLLs don’t receive their DLL_PROCESS_DETACH notification.”

As we saw before, this is a good thing in the case of a corrupted process, because the code

that runs in DLL_PROCESS_DETACH assumes that your process has not been corrupted in the

first place. There’s no point running it when you know the process is corrupted. You’re just

3/3

making a bad situation worse.

“It also says that I/O will be in an indeterminate state.”

Well yeah, but that’s no worse than what you have now, which is that your I/O is in an

indeterminate state. You don’t know what buffers your process hasn’t flushed, but since your

process is corrupted, you have no way of finding out anyway.

“Are you seriously recommending that I use TerminateProcess to exit the last chance

exception handler?!?”

Your process is unrecoverably corrupted. (This is a fact, because if there were a way to

recover from it, you would have done it instead of crashing.) What other options are there?

Quit while you’re behind.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

