
1/3

November 6, 2009

Signs that the symbols in your stack trace are wrong
devblogs.microsoft.com/oldnewthing/20091106-00

Raymond Chen

One of the things programmers send to each other when they
are trying to collaborate on a

debugging problem is stack traces.
Usually something along the lines of
“My program does X,

then Y, then Z, and then it crashes.
Here is a stack trace.
Can you tell me what’s wrong?”

It helps if you at least glance at the stack trace before
you send it, because there are often

signs that the stack
trace you’re about to send is completely useless because
the symbols are

wrong.
Here’s an example:

https://devblogs.microsoft.com/oldnewthing/20091106-00/?p=16123

2/3

We are testing our program and it gradually grinds to a halt.
When we connect a debugger, we
find that all of our threads,
no matter what they are doing, eventually wind up
hung in
kernel32!EnumResourceLanguagesA .
Can someone explain why that function is

hanging,
and why it seems all roads lead to it?

 0 Id: 12a4.1468 Suspend: 1 Teb: 000006fb`fffdc000 Unfrozen

kernel32!EnumResourceLanguagesA+0xbea00

kernel32!EnumResourceLanguagesA+0x2b480

bogosoft!CObjMarker::RequestBlockForFetch+0xf0

...

 1 Id: 12a4.1370 Suspend: 1 Teb: 000006fb`fffda000 Unfrozen

kernel32!EnumResourceLanguagesA+0xbea00

kernel32!EnumResourceLanguagesA+0x2b480

bsnetlib!CSubsystem::CancelMain+0x90

 2 Id: 12a4.1230 Suspend: 1 Teb: 000006fb`fffd8000 Unfrozen

NETAPI32!I_NetGetDCList+0x117e0

kernel32!EnumResourceLanguagesA+0x393a0

ntdll!LdrResFindResource+0x58b20

...

 3 Id: 12a4.cc0 Suspend: 1 Teb: 000006fb`fffd6000 Unfrozen

kernel32!EnumResourceLanguagesA+0xa80

bsnetlib!BSFAsyncWait+0x190

...

 4 Id: 12a4.1208 Suspend: 1 Teb: 000006fb`fffd4000 Unfrozen

kernel32!EnumResourceLanguagesA+0xbea00

kernel32!EnumResourceLanguagesA+0x2b480

bogosoft!TObjList<DistObj>::Get+0xb0

 5 Id: 12a4.1538 Suspend: 1 Teb: 000006fb`fffae000 Unfrozen

kernel32!EnumResourceLanguagesA+0xbf3d0

kernel32!EnumResourceLanguagesA+0x2c800

bsnetlib!Tcp::ReadSync+0x340

...

 6 Id: 12a4.16e0 Suspend: 1 Teb: 000006fb`fffac000 Unfrozen

ntdll!LdrResFindResource+0x61808

ntdll!LdrResFindResource+0x1822a0

kernel32!EnumResourceLanguagesA+0x393a0

ntdll!LdrResFindResource+0x58b20

...

This stack trace looks suspicious for a variety of reasons.

First of all,
look at that offset
 EnumResourceLanguagesA+0xbea00 .
It’s unlikely that the

EnumResourceLanguagesA
function (or any other function)
is over 750KB in size, as this

offset suggests.

Second, it’s unlikely that the EnumResourceLanguagesA
function (or any other function,

aside from obvious cases
like tree walking) is recursive.
And it’s certainly unlikely that a huge

function will also be
recursive.

3/3

Third, it seems unlikely that the EnumResourceLanguagesA
function would call,

NETAPI32!I_NetGetDCList .
What does enumerating resource languages have to do with

getting
a DC list?

Fourth, look at those functions that are allegedly
callers of EnumResourceLanguagesA :

bogosoft!CObjMarker::RequestBlockForFetch ,

bsnetlib!CSubsystem::CancelMain ,
 bsnetlib!Tcp::ReadSync .
Why would any of

these functions want to enumerate resource
languages?

These symbols are obvious wrong.
The huge offsets are present because the debugger has

access only
to exported functions,
and it’s merely showing you the name of the nearest

symbol,
even though it has nothing to do with the actual function.
It’s just using the nearest

signpost it can come up with.
It’s like if somebody gave you directions to the movie theater

like this:
“Go to city hall downtown and then go north for 35 miles.”
This doesn’t mean that

the movie theater is in the downtown district
or that the downtown district is 35 miles long.

It’s just that the person who’s giving you directions can’t come
up with a better landmark

than city hall.

This is just another case of the principle that
you have to know what’s right before you can

see what’s wrong.
If you have no experience with good stack traces,
you don’t know how to

recognize a bad one.

Oh, and even though the functions in question are in
 kernel32 ,
you can still get symbols

for that DLL
with the help of the
Microsoft Symbol Server.

Raymond Chen

Follow

http://blogs.msdn.com/oldnewthing/archive/2006/07/10/661389.aspx
http://support.microsoft.com/kb/311503
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

