
1/2

November 4, 2009

In the product end game, every change carries significant
risk

devblogs.microsoft.com/oldnewthing/20091104-01

Raymond Chen

One of the things I mentioned in my talk the other week comparing school with Microsoft is

that in school, as the deadline approaches, the work becomes increasingly frantic. On the

other hand, in commercial software, as the deadline approaches, the rate of change slows

down, because the risk of regression outweighs the benefit of the fix.
A colleague of mine

offered up this example from Windows 3.1: To fix a bug in GDI, the developers made a very

simple fix. It consisted of setting a global flag when a condition was detected and checking

the flag in another place in the code and executing a few lines of code if it was set. The change

was just a handful of lines, it was very tightly scoped, and it did not affect the behavior of GDI

if the flag was not set. They tested the code, it fixed the problem, everything looked good.

What could possibly go wrong?
A few days after the fix went in, the GDI team started seeing

weird crashes that made no sense in code completely unrelated to the places where they

made the change. What is going on?
After some investigation, they discovered a memory

corruption bug. In 16-bit Windows, the local heap came directly after the global variables,

and local heap memory was managed in the form of local handles. A common error when

working with the local heap was using a local handle as a pointer rather than passing it to the

LocalLock function to convert the handle to a pointer. The developers found a place where

the code forgot to perform this conversion before using a local handle. (In Windows 3.1, most

of GDI was written in assembly language, so you didn’t have a compiler to do type checking

and complain that you’re using a handle as a pointer.) Using the handle as a pointer resulted

in a global variable being corrupted.
Investigation of the code history revealed that this bug

had existed in the code since the day it was first written. Why hadn’t anybody encountered

this bug before?
The handle that was being used incorrectly was allocated at boot time, so its

value was consistent from run to run. The corruption took the form of writing a zero into

memory at the wrong location, and it so happened that the variable that was accidentally

being set to zero was not used often, and at the time the corruption occurred, it happened to

have the value zero already.
Adding a new global variable shifted the other global variables

around in memory, and now the accidental write of zero hit an important variable whose

value was usually not zero.

https://devblogs.microsoft.com/oldnewthing/20091104-01/?p=16143
http://www.acm.uiuc.edu/conference/2009/speakers.html

2/2

In the product end game, every change carries significant risk. It’s often a more prudent

decision to live with the bug you understand than to fix it and risk exposing an even worse

bug whose existence may not come to light until after you ship.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

