
1/3

October 12, 2009

The classical model for linking
devblogs.microsoft.com/oldnewthing/20091012-00

Raymond Chen

Commenter Adam wonders
why we need import libraries anyway.
Why can’t all the type

information be encoded in the export table?

This goes back to the classical model for linking.
This model existed for decades before

Microsoft was even founded,
so at least this time you don’t have Bill Gates to kick around.

(Though I’m sure you’ll find a way anyway.)

Back in the days when computer programs fit into a single
source file, there was only one step

in producing an executable
file:
You compile it.
The compiler takes the source code, parses it

according to the rules
of the applicable language, generates machine code,
and writes it to a

file,
ready to be executed.

This model had quite a following,
in large part because
it was ridiculously fast
if you had a so-

called one-pass compiler.

When programs got complicated enough that you couldn’t
fit them all into a single source

file,
the job was split into two parts.
The compiler still did all the heavy lifting:
It parsed the

source code and generated machine code,
but if the source code referenced a symbol that was

defined in another source file, the compiler doesn’t know
what memory address to generate

for that reference.
The compiler instead generated a placeholder address
and included some

metadata that said,
“Hey, there is a placeholder address at offset XYZ
for symbol ABC.”
And

for each symbol in the file, it also generated some
metadata that said,
“Hey, in case anybody

asks, I have a symbol called BCD
at offset WXY.”
These “99%-compiled” files were called

object modules.

The job of the linker was to finish that last 1%.
It took all the object module and glued the

dangling bits together.
If one object module said
“I have a placeholder for symbol ABC,”
it

went and looked for any other object module that said
“I have a symbol called ABC,”
and it

filled in the placeholder with the information
about ABC, known as resolving the external

reference.

https://devblogs.microsoft.com/oldnewthing/20091012-00/?p=16413
http://blogs.msdn.com/oldnewthing/pages/407234.aspx#670698
http://dn.codegear.com/article/20693

2/3

When all the placeholders got filled in, the linker could
then write out the finished executable

module.
And if there were any placeholders left over,
you got the dreaded
unresolved

external error.

Notice that the only information about symbols
that is provided in the object module is the

symbol name.
Older languages trusted the programmer to get everything else right.
If your

FORTRAN program
defined a common block with two integers and a real,
and you

referenced it from another source file,
it was simply a language requirement that when you

access the
common block, you must treat it as having two integers and a real.
The compiler

was not under any obligation to verify that your
uses of the common block were consistent.

Similar, if
your C program took a function returning long
and redeclared it as a function

returning int,
the compiler merely agreed to your little subterfuge,
and you were on the hook

for the consequences.

Given the classical model for linking, that’s pretty much
all the language specification could

do.
All that was shared between object modules was symbol names.
And back in the old days,

symbol names were restricted to a maximum of eight characters
consisting of uppercase

letters or digits.

The C++ language came up with a workaround:
They encoded the type information in the

symbol name,
a technique known as decoration.
Your function which is named Resolve in

the source code
ends up with the name
 ?Resolve@@YG_NPAGI_N@Z
in the object module,
so

that it can be matched up against the placeholders which ask
for a function named
 ?

Resolve@@YG_NPAGI_N@Z .
The C++ language folks could get away with this because
by the

time the C++ language rolled around, the maximum length for a symbol
was far greater than

8, and the repertoire of valid characters
had grown significantly.
And if you were one of the

dinosaurs using an older system with the
8-character uppercase-only limitation, then you

were just out of luck.

But even the greater symbol name length doesn’t solve all type mismatches.
For example,

symbols for structures and unions are not decorated with
the members of the structure or

union.
You can have one C++ file declare a structure called S
as

struct S {

int i;

float f;

};

and have another C++ file declare it as

struct S {

float f;

int i;

};

and most compilers won’t catch the mismatch.

http://geeks.netindonesia.net/blogs/lontong/archive/2008/08/04/calling-convention-mismatch.aspx

3/3

With that historical background, we can begin addressing
Adam’s question next time.

Sidebar:
For those interested in nonclassical linking, there’s this article on
changes to linker

scalability in Visual C++ 2010.

Raymond Chen

Follow

http://blogs.msdn.com/vcblog/archive/2009/09/10/linker-throughput.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

