
1/2

October 9, 2009

LoadString can load strings with embedded nulls, but
your wrapper function might not

devblogs.microsoft.com/oldnewthing/20091009-00

Raymond Chen

Whenever somebody reports that the
 SHFileOperation function
or the lpstrFilter

member of the
 OPENFILENAME structure
is not working,
my psychic powers tell me that they

failed to manage
the double-null-terminated strings.

Since
string resources take the form of a counted string,
they can contain embedded null

characters,
since the null character is not being used as the string terminator.
The

LoadString function knows about this,
but other functions might not.

Here’s one example:

TCHAR szFilters[80];

strcpy_s(szFilters, 80, "Text files\0*.txt\0All files\0*.*\0");

// ... or ...

strlcpy(szFilters, "Text files\0*.txt\0All files\0*.*\0", 80);

The problem is that you’re using a function which operates
on null-terminated strings
but

you’re giving it a double-null-terminated string.
Of course, it will stop copying at the first null

terminator,
and the result is that szFilters is not a valid
double-null-terminated string.

Here’s another example:

sprintf_s(szFilters, 80, "%s\0*.txt\0%s\0*.*\0", "Text files", "All files");

Same thing here.
Functions from the
 sprintf family take a null-terminated
string as the

format string.
If you “embed” a null character into the format string,
the sprintf function

will treat it as the end of the
format string and stop processing.

Here’s a more subtle example:

CString strFilter;

strFilter.LoadString(g_hinst, IDS_FILE_FILTER);

There is no obvious double-null-termination bug here,
but there is if you look deeper.

https://devblogs.microsoft.com/oldnewthing/20091009-00/?p=16423
http://shellrevealed.com/blogs/shellblog/archive/2006/09/28/Common-Questions-Concerning-the-SHFileOperation-API_3A00_-Part-2.aspx
http://blogs.msdn.com/oldnewthing/archive/2004/01/30/65013.aspx

2/2

BOOL CString::LoadString(UINT nID)
{

 // try fixed buffer first (to avoid wasting space in the heap)

 TCHAR szTemp[256];

 int nCount = sizeof(szTemp) / sizeof(szTemp[0]);

 int nLen = _LoadString(nID, szTemp, nCount);

 if (nCount - nLen > CHAR_FUDGE)

 {

 *this = szTemp;

 return nLen > 0;

 }

 // try buffer size of 512, then larger size until entire string is retrieved

 int nSize = 256;

 do

 {

 nSize += 256;

 nLen = _LoadString(nID, GetBuffer(nSize - 1), nSize);

 } while (nSize - nLen <= CHAR_FUDGE);

 ReleaseBuffer();

 return nLen > 0;

}

Observe that this function loads the string into a temporary
buffer, and then if it succeeds,

stores the result via the
 operator= operator,
which assumes a null-terminated string.
If

your string resource contains embedded nulls,
the operator= operator will stop at the first

null.

The mistake here was taking a class designed for null-terminated strings
and using it for

something that isn’t a null-terminated string.
After all, it’s called a CString and not a

CDoubleNullTerminatedString .

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

