
1/4

October 8, 2009

What is the format of a double-null-terminated string with
no strings?

devblogs.microsoft.com/oldnewthing/20091008-00

Raymond Chen

One of the data formats peculiar to Windows is the
double-null-terminated string.
If you

have a bunch of strings and you want to build
one of these elusive double-null-terminated

strings out of it,
it’s no big deal.

H e l l o \0 w o r l d \0 \0

But what about the edge cases?
What if you want to build a double-null-terminated string

with no strings?

Let’s step back and look at the double-null-terminated string
with two strings in it.
But I’m

going to insert line breaks to highlight the structure.

H e l l o \0

w o r l d \0

\0

Now I’m going to move the lines around.

Hello\0

world\0

\0

This alternate way of writing the double-null-terminated string
is the secret.
Instead of

viewing the string as something terminated by
two consecutive null terminators, let’s view it

as a
list of null-terminated strings, with a zero-length string at the end.
Alternatively, think of

it as a packed array of null-terminated
strings, with a zero-length string as the terminator.

https://devblogs.microsoft.com/oldnewthing/20091008-00/?p=16443

2/4

This type of reinterpretation happens a lot in advanced
mathematics.
You have some classical

definition of an object,
and then you invent a new interpretation which agrees
with the

classical definition, but which gives you a
different perspective on the system and even

generalizes
to cases the classical definition didn’t handle.

For example, this “modern reinterpretation” of
double-null-terminated strings provides

another answer
to a standard question:

How do I build a double-null-terminated string with an empty
string as one of the strings in

the list?

You can’t, because the empty string is treated as the end of the
list.
It’s the same reason why

you can’t put a null character
inside a null-terminated string:
The null character is treated as

the terminator.
And in a double-null-terminated string,
an empty string is treated as the

terminator.

One\0

\0

Three\0

\0

If you try to put a zero-length string in your list,
you end up accidentally terminating it

prematurely.
Under the classical view, you can see the two consecutive
null terminators:

They come immediately after the
 "One" .
Under the reinterpretation I propose,
it’s more

obvious,
because the zero-length string is itself the terminator.

If you’re writing a helper class to manage double-null-terminated strings,
make sure you

watch out for these empty strings.

This reinterpretation of a double-null-terminated string as really
a list of strings with an

empty string as the terminator
makes writing code to walk through a double-null-

terminated string
quite straightforward:

for (LPTSTR pszz = pszzStart; *pszz; pszz += lstrlen(pszz) + 1) {

... do something with pszz ...

}

Don’t think about looking for the double null terminator.
Instead, just view it as a list of

strings,
and you stop when you find a string of length zero.

This reinterpretation also makes it clear how you express a list
with no strings in it at all:
All

you have is the zero-length string terminator.

3/4

\0

Why do we even have double-null-terminated strings at all?
Why not just pass an array of

pointers to strings?

That would have worked, too,
but it makes allocating and freeing the array more

complicated,
because the memory for the array and the component strings are
now scattered

about.
(Compare absolute and self-relative security descriptors.)
A double-null-terminated

string occupies a single block of memory
which can be allocated and freed at one time,
which

is very convenient when you have to serialize and deserialize.
It also avoids questions like
“Is

it legal for two entries in the array to point to the same string?”

Keeping it in a single block of memory reduces the number of selectors
necessary to

represent the data in 16-bit Windows.
(And this data representation was developed long

before the 80386
processor even existed.)
An array of pointers to 16 strings would require 17

selectors,
if you used GlobalAlloc to allocate the memory:
one for the array itself,
and one

for each string.
Selectors were a scarce resource in 16-bit Windows;
there were only 8192 of

them available in the entire system.
You don’t want to use 1% of your system’s entire

allocation
just to represent an array of 100 strings.

One convenience of double-null-terminated strings is that you can load one
directly out of

your resources with a single call to LoadString :

STRINGTABLE

BEGIN

IDS_FILE_FILTER "Text files\0*.txt\0All files\0*.*\0"

END

TCHAR szFilter[80];

LoadString(hinst, IDS_FILE_FILTER, szFilter, 80);

This is very handy because it allows new filters to be added
by simply changing a resource.
If

the filter were passed as an array of pointers to strings,
you would probably put each string in

a separate resource,
and then the number of strings becomes more difficult to update.

But there is a gotcha in the above code,
which we will look at next time.

Bonus Gotcha:
Even though you may know how double-null terminated strings work,
this

doesn’t guarantee that the code you’re interfacing with
understands it as well as you do.

Consequently, you’d be best off putting the extra null terminator
at the end if you are

generating a double-null-terminated string,
just in case the code you are calling expects the

extra null
terminator (even though it technically isn’t necessary).
Example:
The ANSI version

of
CreateProcess locates the end of the environment block by
looking for two consecutive

NULL bytes instead of looking for
the empty string terminator.

http://msdn.microsoft.com/en-us/library/ms682425.aspx

4/4

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

