
1/2

September 23, 2009

The COM marshaller uses the COM task allocator to
allocate and free memory

devblogs.microsoft.com/oldnewthing/20090923-00

Raymond Chen

It should be second nature to you that the code which allocates memory
and the code which

frees memory need to use the same allocator.
Most of the time, you think of it as
“If you

allocate memory, you need to free it with the
corresponding mechanism,”
but this sentence

works in the reverse direction as well:
If you hand memory to a function that will free it,
you

have to allocate the memory with the corresponding mechanism.

Let’s look at this question that appeared on a discussion group:

I have the following method defined in my IDL file:

HRESULT GetSomething([in, string] LPCWSTR pszArg,

 [out] DWORD* pcchOut,

 [out, size_is(, *pcchOut)] LPWSTR* ppszOut);

My server implementation of this method goes like this:

STDMETHODIMP CSomething::GetSomething(

 LPCWSTR pszArg, DWORD* pcchOut, LPWSTR* ppszOut)

{

 HRESULT hr = ...

 DWORD cch = ...

 *pcchOut = cch;

 *ppszOut = new(nothrow) WCHAR[cch];

 // ... fill in *ppszOut if successful ...

 return hr;

}

When I call this method from a client,
the COM server crashes
after
CSomething::GetSomething returns.
What am I doing wrong?

The answer should be obvious to you,
particularly given the hint in the introductory

paragraph,
but for some reason, the people on the discussion group
got all worked up about

how the annotations on the ppszOut
parameter should have been written,
whether

https://devblogs.microsoft.com/oldnewthing/20090923-00/?p=16613

2/2

*pcchOut is a count of bytes
or WCHAR s,
how the marshaller was registered,
and nobody

even noticed that the allocator didn’t match the
deallocator.

The rule for COM is that any memory that one module allocates
and another module frees

must use the COM task allocator.
The intent of this rule is to set down one simple,

straightforward rule;
without it,
everybody would have to
create their own mechanism for

allocating and freeing
memory across module boundaries,
resulting in the same mishmash

that we have in plain Win32,
with the global heap, the local heap, the process heap,
the C

runtime library,
or even ad-hoc explicitly paired memory allocation functions like

NetApiBufferAllocate and
 NetApiBufferFree .

Instead, with COM, it’s very simple.
If you allocate memory that another COM component

will free,
then you must use CoTaskMemAlloc *
and if you free memory that another COM

component allocated,
then you must use CoTaskMemFree .*

In this case, the CSomething::GetSomething method is
allocating memory that the calling

component will eventually free.
Therefore, the memory must be allocated with

CoTaskMemAlloc .*

Nitpicker’s corner

*Or a moral equivalent.
Note that SysAllocString is not a moral equivalent
to

CoTaskMemAlloc .

Remark:
MSDN can’t seem to make up its mind whether to
double the L at the end of

“marshal” before adding a suffix,
so when searching for information about marshalling,
try it

both
ways.

Raymond Chen

Follow

http://www.bing.com/search?q=site:msdn.microsoft.com+marshalling
http://www.bing.com/search?q=site:msdn.microsoft.com+marshaling
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

