
1/2

September 11, 2009

If you're handling an out of memory exception, you
probably shouldn't allocate memory

devblogs.microsoft.com/oldnewthing/20090911-00

Raymond Chen

With the assistance of
Application Verifier,
specifically, low resource simulation
(also known

as fault injection),
a tester found a stack overflow condition.
As we learned earlier,
the

important thing to look at when
studying a stack overflow is the repeating section.

Contoso!Error::ThrowError+0x39

Contoso!Str::Set+0x35

Contoso!Win32::OpenModuleName+0x54

Contoso!StackTrace::StackEntry::FindModuleInfo+0x1b

Contoso!StackTrace::CreateTrace+0x2c

Contoso!StackTrace::StackTrace+0x4f

Contoso!Error::Error+0x1f

When this stack trace was shown to the development team,
they instantly recognized the

cause of the problem.
And you also have enough information to figure it out, too.

Hint:
Of the most likely reasons that a method named
 Str::Set would throw an error,

which of them match the scenario?

Since we are simulating low resources, the error being thrown
is most likely an out of

memory error.

Reading the stack dump, the constructor for the Error
object builds a stack trace object,

and the stack trace object
tries to allocate memory for a string in order to do its job.
But that

memory allocation fails, because we are out of memory,
so an Error object is thrown,

which builds a stack trace,
which encounters an out of memory error, and so on.

Obviously, the mistake was allocating memory as part of
the process of reporting an out of

memory condition.
You need to be careful to avoid generating the very error that
caused your

error handler to be called.

Related topics:

Raymond Chen

https://devblogs.microsoft.com/oldnewthing/20090911-00/?p=16753
http://msdn.microsoft.com/en-us/library/aa480483.aspx
http://blogs.msdn.com/oldnewthing/archive/2009/01/07/9286576.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

2/2

Follow

