
1/2

August 24, 2009

The operating system doesn't know which language
programs are written in – by the time the code hits the
CPU, they all look the same

devblogs.microsoft.com/oldnewthing/20090824-00

Raymond Chen

Reader
Will Rayer
asks about
“the degree to which ‘plain vanilla’ C Windows API code
works

under Vista with the native look and feel.”

It works just as well as code written in any other language.
The operating system doesn’t

know which language programs are
written in.
By the time the code reaches the CPU,
they all

look the same.
It’s just a bunch of instructions that occasionally call an API function.
You can

write it in C, C++, assembly, Delphi, Perl, whatever.

Of course, some languages are better-suited to calling Win32 than others.
Win32 is a C-based

API,
in the sense that the way you call an exported function is
expressed in a C header file,

and __stdcall calling convention matches up reasonably
well with the way C does things

(once you convince your compiler to follow that convention).
The way types are passed on the

stack or in registers,
how return values are represented,
the fact that pointers are just the

address of some blob of data,
these all follow the C way of thinking.
It stands to reason that

the C language
(and languages which follow in C’s footsteps,
like C++)
have a pretty easy

time of calling Win32 exported functions.

But that doesn’t mean that those are the only languages.
After all, at the end of the day, it’s all

machine code.
If you can write assembly language that pushes the parameters
in the right

format in the right order, then you can use Win32 from
assembly language.
(There appears to

be a whole subculture devoted to this endeavor.)

Now, it is indeed the case that COM programming is much more
convenient in C++ because

the COM object layout
matches that of many C++ compilers.
But that doesn’t mean you can’t

use some other language to do it.
As long as that language knows how to indirect through a

vtable,
you can use COM objects.
Indeed, the COM header files go out of their way to make

sure
even you old-school C programmers can call COM objects.
If you define the

COBJMACROS symbol, then
you get access to macros like this:

https://devblogs.microsoft.com/oldnewthing/20090824-00/?p=17023
http://www.ubercode.com/
http://blogs.msdn.com/oldnewthing/pages/407234.aspx#649621
http://blogs.msdn.com/oldnewthing/archive/2004/02/05/68017.aspx

2/2

#define IPersistFile_GetClassID(This,pClassID) \

 (This)->lpVtbl -> GetClassID(This,pClassID)

This snippet from the objidl.h header file
is some syntactical sugar to help C

programmers use COM.
Under pure C, you would retrieve the CLSID
from an

IPersistFile interface pointer like this:

CLSID clsid;

IPersistFile* ppf = ...;

HRESULT hr = ppf->lpVtbl->GetClassID(ppf, &clsid);

The above macro at least removes the error potential of
passing the wrong this pointer:

CLSID clsid;

IPersistFile* ppf = ...;

HRESULT hr = IPersistFile_GetClassID(ppf, &clsid);

If you want to write your programs in C,
you still have a lot of company.
Huge chunks of

Windows are still written in the C language.
Not that you can tell, because once the compiler

is
done doing its thing,
the identity of the source language is long gone.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

