
1/4

August 21, 2009

Restating the obvious about the WM_NOTIFY message
devblogs.microsoft.com/oldnewthing/20090821-00

Raymond Chen

It appears that people seemed to appreciate
restating the obvious about the WM_COMMAND

message,
so I’ll try it again with the WM_NOTIFY message.

The WM_NOTIFY message is typically used by a control
to communicate with its parent,

either to provide information, request it, or both.
Although that is the typical use,
there are

exceptions.
For example, property sheets send the WM_NOTIFY
to their children.
Property

sheets are this sort-of backwards model,
where the common controls provide the parent

window (the property sheet)
and applications provide the child windows (the property sheet

pages).
The window manager doesn’t care who sends the message to whom,
as long as the

sender and recipient are in the same process.

The message cannot cross a process boundary because WM_NOTIFY
is basically a sender-

defined version of WM_USER .
Anybody can define a new notification code and associate it

with
any structure they want (as long as the structure begins with
a NMHDR).
The window

manager can’t marshal the structure between processes
because the structure is defined by

the control,
not the window manager.

A little elaboration of that “sender-defined version of
 WM_USER “:
As we saw,
the meaning of

WM_USER messages is determined by the
implementor of the window class.
In other words,

the code receiving the message decides what
 WM_USER means.
That works great if you’re

some external code that wants to send a message
to a known window class.
But what if you’re

external code that wants to send a message to an
unknown window class?
For example,

you’re a list view control and you want to tell your parent
about some event.
You want to send

a message to the parent window,
but which message?
You can’t send anything in the

WM_USER range
because each parent window defines independently what those messages

mean,
and it’s highly unlikely that all the parent windows are going to agree
that

WM_USER+205 means the same thing.
For similar reasons, the WM_APP range is no good.
A

registered message would work, but if you have hundreds of potential
events, then a hundred

registered messages is a bit heavy-handed.
The old-school answer to this was the

WM_COMMAND message,
whose notification code is defined by the sending control.

Unfortunately,
the notification code is all you get; the other parameters are busy
doing other

things.
Enter WM_NOTIFY , which is basically
 WM_COMMAND on steroids:
The NMHDR

https://devblogs.microsoft.com/oldnewthing/20090821-00/?p=17033
http://blogs.msdn.com/oldnewthing/archive/2006/03/02/542115.aspx
http://blogs.msdn.com/oldnewthing/archive/2003/12/02/55914.aspx

2/4

structure contains everything that was
in the WM_COMMAND message, and since it’s a

structure,
you can embed the NMHDR inside a larger structure
to provide (and possibly

receive) more information.

Okay, end of strange digression.

The NMHDR structure itself is a convention,
in the same way that the parameters to

WM_COMMAND
are a convention.
The hwndFrom member is supposed to be the
control that

generated the notification, but there’s
no enforcement.

First, there’s no way to enforce it.
A window doesn’t send a message; code sends a message.

You can check the thread that is executing the code that
is sending a message, but you don’t

know which window
that code is associated with.

“Well, the window that is sending the message is the one
that most recently received a

message.”

That doesn’t work because you can have code associated
with one window call code

associated with another window
without actually sending a message.
In fact, you probably do

this all the time:

class CFrame : public CWindow {

...

LRESULT OnCommand(...);

...

CGraphWindow *m_pwndGraph;

};
LRESULT CFrame::OnCommand(...)

{

switch (idFrom) {

case IDC_CPU: // user clicked the "CPU" button

 m_pwndGraph->ChangeMode(CPU); // change to a CPU graph

 ...

}

Suppose that CGraphWindow::ChangeMode function
calls SendMessage as part of its

processing.
Which window “sent” this message?
Since you have the power to read code, the

message was
conceptually sent by CGraphWindow ,
but the most recently received message is

a WM_COMMAND
sent to the frame window.

Your method call is just a transfer of control inside your program.
The window manager

doesn’t know what’s going on.
All it knows is that it delivered a WM_COMMAND message
to the

frame window, and then some mystery code executed, and
the next thing you know,

somebody is sending a message.
It doesn’t have the source code to your program to know

that
“Oh, that’s coming from CGraphWindow::ChangeMode ,
and to get the window handle

3/4

for CGraphWindow ,
I should call CGraphWindow::operator HWND() .”
(And even if it did,

imagine your surprise when your breakpoint
on CGraphWindow::operator HWND()
gets hit

because SendMessage called it!)

Second, even if there were some psychic way for the window
manager to figure out which

window is sending the message,
you still wouldn’t want that.
It is common for WM_NOTIFY

handlers of complex
controls to forward the message to another window.
For example, the

list view control in report mode
receives WM_NOTIFY
messages from the header control and

forwards them
back out to its own parent,
so that the list view parent can respond to header

notifications.
(The parent normally should just let the list view handle it,
but the operation is

performed in case you’re one of those
special cases that needs it.)

Okay, back to what the fields of NMHDR mean.
There are only three fixed fields to NMHDR

and
they pretty much match up with the parameters to
 WM_COMMAND :

hwndFrom is the handle to the window that
is the logical source of the notification.

idFrom is the control ID corresponding to the
window specified by hwndFrom .
In

other words, idFrom = GetDlgCtrlID(hwndFrom) .

code is the notification code.
The meaning of this notification code depends on the

window
class of hwndFrom .

It is an unwritten convention that the notification codes for
the common controls are all

negative numbers.
This leaves positive numbers for applications to use for their
own

purposes.
Not that applications strictly speaking needed the help,
because the meaning of the

notification code depends on the
window that generated the notification,
so if you want a

brand new 32-bit message number namespace,
just register a new window class, and boom, a

whole new range
of codes becomes available just to you.
(Even though the notification code

values do not need to be unique
across window classes,
the common controls team tries to

keep the system-defined notification
codes from overlapping, just to make debugging easier.)

The idFrom member is provided as a convenience
to the window receiving the message so

that it can use a simple
 switch statement to figure out who is sending
the notification.

Once you figure out which notification you’re receiving,
you can use the documentation for

that notification to see
which structure is associated with the notification.
This answers

Norman Diamond’s complaint
that he
couldn’t figure out what to cast it to.
For example, if

the notification is
 LVN_ITEMCHANGING ,
well, let’s see,
the documentation for

LVN_ITEMCHANGING says,

LVN_ITEMCHANGING

pnmv = (LPNMLISTVIEW) lParam;

pnmv: Pointer to an
NMLISTVIEW structure
that identifies the item and specifies which of its
attributes are changing.

http://blogs.msdn.com/oldnewthing/archive/2006/03/02/542115.aspx#552686
http://msdn.microsoft.com/en-us/library/bb774847.aspx
http://msdn.microsoft.com/en-us/library/bb774773.aspx

4/4

In other words, your code goes something like this:

case LVN_ITEMCHANGING:

pnmv = (LPNMLISTVIEW) lParam;

... do stuff with pnmv ...

I’m not sure how much more explicit the documentation could be made to be.
All it was

missing was the word case in front.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

