
1/3

August 14, 2009

Why can't I declare a type that derives from a generic
type parameter?

devblogs.microsoft.com/oldnewthing/20090814-00

Raymond Chen

A lot of questions about C# generics come from the starting point
that they are just a cutesy

C# name for C++ templates.
But while the two may look similar in the source code,
they are

actually quite different.

C++ templates are macros on steroids.
No code gets generated when a template is

“compiled”;
the compiler merely hangs onto the source code,
and when you finally instantiate

it,
the actual type is inserted and code generation takes place.

// C++ template

template<class T>

class Abel

{

public:

int DoBloober(T t, int i) { return t.Bloober(i); }

};

This is a perfectly legal (if strange) C++ template class.
But when the compiler encounters

this template,
there are a whole bunch of things left unknown.
What is the return type of

T::Bloober ?
Can it be converted to an int ?
Is T::Bloober a static method?
An

instance method?
A virtual instance method?
A method on a virtual base class?
What is the

calling convention?
Does T::Bloober take an int argument?
Or maybe it’s a double ?

Even stranger, it might accept a Canoe which
gets converted from an int by a
converting

constructor.
Or maybe it’s a function that takes two parameters,
but the second parameter

has a default value.

Nobody knows the answers to these questions, not even the compiler.
It’s only when you

decide to instantiate the template

Abel<Baker> abel;

that these burning questions can be answered,
overloaded operators can be resolved,

conversion operators can be hunted down,
parameters can get pushed on the stack in the

correct order,
and the correct type of call instruction can be
generated.

https://devblogs.microsoft.com/oldnewthing/20090814-00/?p=17093
http://blogs.msdn.com/oldnewthing/archive/2006/05/24/605974.aspx

2/3

In fact, the compiler doesn’t even care whether or not Baker
has a Bloober method, as

long as you never call
 Abel<Baker>::DoBloober !

void f()

{

Abel<int> a; // no error!

}

void g()

{

Abel<int> a;

a.DoBloober(0, 1); // error here

}

Only if you actually call the method does the compiler start looking for
how it can generate

code for the DoBloober method.

C# generics aren’t like that.

Unlike C++, where a non-instantiated template exists only
in the imaginary world of

potential code that could exist but doesn’t,
a C# generic results in code being generated,
but

with placeholders where the type parameter should be inserted.

This is why you can use generics implemented in another assembly,
even without the source

code to that generic.
This is why a generic can be recompiled without having to recompile
all

the assemblies that use that generic.
The code for the generic is generated when the generic

is compiled.
By comparison no code is generated for C++ templates
until the template is

instantiated.

What this means for C# generics is that if you want to do something
with your type

parameter, it has to be something that the compiler
can figure out how to do without

knowing what T is.
Let’s look at the example that generated today’s question.

class Foo<T>

{

class Bar : T

{ ... }

}

This is flagged as an error by the compiler:

error CS0689: Cannot derive from 'T' because it is a type parameter

Deriving from a generic type parameter is explicitly forbidden by
25.1.1 of the C# language

specification.
Consider:

3/3

class Foo<T>

{

class Bar : T

{
 public void FlubberMe()

 {

 Flubber(0);

 }

}
}

The compiler doesn’t have enough information to generate the IL for
the FlubberMe

method.
One possibility is

ldarg.0 // "this"

ldc.i4.0 // integer 0 - is this right?

call T.Flubber // is this the right type of call?

The line ldc.i4.0 is a guess.
If the method T.Flubber were actually
 void

Flubber(long l) ,
then the line would have to be ldc.i4.0; conv.i8
to load an 8-byte

integer onto the stack instead of a 4-byte integer.
Or perhaps it’s
 void Flubber(object

o) ,
in which case the zero needs to be boxed.

And what about that call instruction?
Should it be a call or callvirt ?

And what if the method returned a value, say,
 string Flubber(int i) ?
Now the compiler

also has to generate code to discard the
return value from the top of the stack.

Since the source code for a generic is not included in the assembly,
all these questions have to

be answered at the time the generic is
compiled.
Besides, you can
write a generic in Managed

C++ and use it from VB.NET.
Even saving the source code won’t be much help if the generic

was implemented in a language you don’t have the compiler for!

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

