
1/3

August 13, 2009

Common gotchas when writing your own p/invoke
devblogs.microsoft.com/oldnewthing/20090813-00

Raymond Chen

If you’re looking to get into some p/invoke action,
you’d be well-served to check out the

pinvoke wiki
to see if somebody else has done it too.
If what you need isn’t there, you may

end up forced to write your own,
and here are some gotchas I’ve seen people run into:

C++ bool and Win32 BOOLEAN
are not the same as C# bool
(aka

System.Boolean).
In Win32, BOOL is a 4-byte type,
and BOOLEAN is a 1-byte type.

[See also
MadQ’s remarks about VARIANT_BOOL.]
Meanwhile, C++ bool is not

standardized by Win32,
so the size will vary based on your compiler, but most

compilers
use a 1-byte value.
And then C# is even weirder:
The bool is a 1-byte type,

but it marshals as a 4-byte type by default.

Win32 char is not the same as C# char
(aka System.Char).
In C#, char is a

Unicode character (two bytes), whereas in
C/C++ under Win32 it is an ANSI character

(one byte).

Win32 long is not the same as C# long
(aka System.Int64).
In C#, long is 64-

bit value, whereas in
C/C++ under Win32 it is a 32-bit value.

If memory is allocated and freed across the interop boundary,
make sure both sides are

using the same allocator.
It is my understanding that
the CLR uses

CoTaskMemAlloc/CoTaskMemFree
by default.
If your Win32 function doesn’t use

CoTaskMemAlloc ,
you’ll have to teach the CLR which allocator you really want.

When laying out structures, you have to watch out for alignment.

That last one is particularly gnarly on 64-bit systems,
where alignment requirements are less

forgiving than on x86.
The structure declarations on pinvoke.net tend to ignore 64-bit
issues.

For example, the declaration of the INPUT structure
(as of this writing—it’s a wiki so it’s

probably changed
by the time you read this) reads as follows:

[StructLayout(LayoutKind.Explicit)]struct INPUT {

 [FieldOffset(0)] int type;

 [FieldOffset(4)] MOUSEINPUT mi;

 [FieldOffset(4)] KEYBDINPUT ki;

 [FieldOffset(4)] HARDWAREINPUT hi;

}

https://devblogs.microsoft.com/oldnewthing/20090813-00/?p=17113
http://pinvoke.net/
http://blogs.msdn.com/oldnewthing/archive/2009/08/13/9867383.aspx#9870333
http://blogs.msdn.com/jaredpar/archive/2008/10/14/pinvoke-and-bool-or-should-i-say-bool.aspx
http://msdn.microsoft.com/en-us/library/f1cf4kkz.aspx
http://pinvoke.net/default.aspx/user32/SendInput(2008-01-24-03-56-33.4726--69.14.194.68).html

2/3

This structure layout is correct for 32-bit Windows,
but it’s incorrect for 64-bit Windows.

Let’s take a look at that MOUSEINPUT structure,
for starters.

typedef struct tagMOUSEINPUT {

 LONG dx;

 LONG dy;

 DWORD mouseData;

 DWORD dwFlags;

 DWORD time;

 ULONG_PTR dwExtraInfo;

} MOUSEINPUT, *PMOUSEINPUT, FAR* LPMOUSEINPUT;

In 64-bit Windows, the LONG and DWORD
members are four bytes, but the dwExtraInfo

is
a ULONG_PTR , which is eight bytes on a 64-bit machine.
Since
Windows assumes /Zp8

packing,
the dwExtraInfo must be aligned on an 8-byte boundary,
which forces four bytes

of padding to be inserted after the
 time to get the dwExtraInfo to align
properly.
And in

order for all this to work, the MOUSEINPUT
structure itself must be 8-byte aligned.

Now let’s look at that INPUT structure again.
Since the MOUSEINPUT comes after the

type ,
there also needs to be padding between the type
and the MOUSEINPUT to get the

MOUSEINPUT
back to an 8-byte boundary.
In other words, the offset of mi in the INPUT

structure is 8 on 64-bit Windows, not 4.

Here’s how I would’ve written it:

// This generates the anonymous union

[StructLayout(LayoutKind.Explicit)] struct INPUT_UNION {

 [FieldOffset(0)] MOUSEINPUT mi;

 [FieldOffset(0)] KEYBDINPUT ki;

 [FieldOffset(0)] HARDWAREINPUT hi;

};
[StructLayout(LayoutKind.Sequential)] struct INPUT {

 int type;

 INPUT_UNION u;

}

I introduce a helper structure to represent the anonymous union
that is the second half of the

Win32 INPUT structure.
By doing it this way, I let somebody else worry about the

alignment,
and it’ll be correct for both 32-bit and 64-bit Windows.

static public void Main()

{

 Console.WriteLine(Marshal.OffsetOf(typeof(INPUT), "u"));

}

On a 32-bit system, this prints 4,
and on a 64-bit system, it prints 8.
The downside is that you

have to type an extra u.
when you access the mi , ki or hi
members.

http://blogs.msdn.com/oldnewthing/archive/2009/04/22/9560726.aspx
http://blogs.msdn.com/oldnewthing/archive/2009/08/13/9867383.aspx#9869008

3/3

input i;

i.u.mi.dx = 0;

(I haven’t checked what the
PInvoke Interop Assistant
comes up with for the INPUT

structure.)

Raymond Chen

Follow

http://www.codeplex.com/Release/ProjectReleases.aspx?ProjectName=clrinterop&ReleaseId=14120
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

