
1/3

August 12, 2009

Why can't I pass a reference to a derived class to a
function that takes a reference to a base class by
reference?

devblogs.microsoft.com/oldnewthing/20090812-00

Raymond Chen

“Why can’t I pass a reference to a derived class
to a function that takes a reference to a base

class by reference?”
That’s a confusing question, but it’s phrased that way because
the

simpler phrasing is wrong!

Ths misleading simplified phrasing of the question is
“Why can’t I pass a reference to a

derived class to a function that
takes a base class by reference?”
And in fact the answer is

“You can!”

class Base { }

class Derived : Base { }

class Program {

 static void f(Base b) { }

 public static void Main()

 {

 Derived d = new Derived();

 f(d);

 }

}

Our call to f passes a reference to the
derived class
to a function that takes a reference to

the base class.
This is perfectly fine.

When people ask this question, they are typically wondering
about passing a reference to the

base class by reference.
There is a double indirection here.
You are passing a reference to a

variable,
and the variable is a reference to the base class.
And it is this double reference that

causes the problem.

https://devblogs.microsoft.com/oldnewthing/20090812-00/?p=17133

2/3

class Base { }

class Derived : Base { }

class Program {

 static void f(ref Base b) { }

 public static void Main()

 {

 Derived d = new Derived();

 f(ref d); // error

 }

}

Adding the ref keyword to the parameter results
in a compiler error:

error CS1503: Argument '1': cannot convert from 'ref Derived' to 'ref Base'

The reason this is disallowed is that it would allow you to violate
the type system.
Consider:

 static void f(ref Base b) { b = new Base(); }

Now things get interesting.
Your call to f(ref d) passes a reference to a
 Derived by

reference.
When the f function modifies its formal parameter b ,
it’s actually modifying

your variable d .
What’s worse, it’s putting a Base in it!
When f returns, your variable

d ,
which is declared as being a reference to a Derived
is actually a reference to the base

class Base .

At this point everything falls apart.
Your program calls some method like

d.OnlyInDerived() ,
and the CLR ends up executing a method on an object that doesn’t

even support that method.

You actually knew this; you just didn’t know it.
Let’s start from the easier cases and work up.

First, passing a reference into a function:

void f(SomeClass s);

...

 T t = new T();

 f(t);

The function f expects to receive a reference to a
 SomeClass , but you’re passing a

reference to a T .
When is this legal?

“Duh.
 T must be SomeClass or a class derived
from SomeClass .”

What’s good for the goose is good for the gander.
When you pass a parameter as ref ,
it not

only goes into the method, but it also comes out.
(Not strictly true
but close enough.)
You can

think of it as a bidirectional parameter to the function call.
Therefore, the rule “If a function

expects a reference to a class,
you must provide a reference to that class or a derived class”

applies in both directions.
When the parameter goes in, you must provide a reference to that

http://foldoc.org/?call-by-value-result

3/3

class or a derived class.
And when the parameter comes out,
it also must be a reference to

that class or a derived class
(because the function is “passing the parameter” back to you, the

caller).

But the only time that S can be T or a subclass,
while simultaneously having
 T be S or

a subclass
is when S and T are the same thing.
This is just the law of antisymmetry for

partially-ordered sets:
“if a ≤ b
and b ≤ a,
then a = b.”

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

