
1/1

August 11, 2009

Actually, FlagsAttribute can't do more; that's why it's an
attribute

devblogs.microsoft.com/oldnewthing/20090811-00

Raymond Chen

A few years ago, Abhinaba wondered why FlagsAttribute didn’t also alter the way

enumeration values are auto-assigned.
Because attributes don’t change the language. They

are instructions to the runtime environment or (in rarer cases) to the compiler. An attribute

can instruct the runtime environment to treat the function or class in a particular way. For

example, you can use an attribute to tell the runtime environment that you want the program

entry point to run in a single-threaded apartment, to tell the runtime environment how to

look up your p/invoke function, or to tell the compiler to suppress a particular class of

warnings.
But changing how values for enumerations are assigned, well that actually changes

the language. An attribute can’t change the operator precedence tables. An attribute can’t

change the way overloaded functions are resolved. An attribute can’t change the statement

block tokens from curly braces to square braces. An attribute can’t change the IL that gets

generated. The code still compiles to the same IL; the attribute just controls the execution

environment, such as how the JIT compiler chooses to lay out a structure in memory.

Attribute or not, enumerations follow the same rule for automatic assignment: An

enumeration symbol receives the value one greater than the previous enumeration symbol.

Raymond Chen

Follow







https://devblogs.microsoft.com/oldnewthing/20090811-00/?p=17153
http://blogs.msdn.com/abhinaba/archive/2006/08/30/731426.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

