
1/3

July 27, 2009

Polling by sleeping versus polling by waiting with a
timeout

devblogs.microsoft.com/oldnewthing/20090727-00

Raymond Chen

Commenter Francois Boucher asks
it’s better to write a background worker thread that polls

with
Sleep() and a flag, or polls by waiting for an event
with a timeout?

// method A

while (fKeepGoing) {

.. a little work ..

Sleep(50);

}

// method B

do {

.. a little work ..

} while (WaitForSingleObject(hEvent, 50) == WAIT_TIMEOUT);

“Which scenario is better?
The first one uses only 1 handle for the thread.
The second one will

use 2.
But is the first scenario wasting more thread time?
Is it worth using the event (kernel

object)?”

Yeah, whatever.

I don’t quite understand why you want to pause every so often.
Why not just do the work at

low priority?
When there are more important things to do, your background thread
will stop

doing whatever it’s doing.
When there is an available CPU, then your background thread
will

do its thing as fast as it can (until something with higher
priority arrives).

The only thing I can think of is that by adding the pauses,
your program won’t look like it’s

consuming 100% CPU while the
background processing is going on.
Which is true, but then

again,
that’s not much consolation.
“Wow, with these changes,
my spell check takes only 10%

of the CPU.
But then again, it also takes 10 times as long.”
Is that an improvement?
You

made your customer wait ten times as long for the document to
be spell checked.
That’s ten

times less battery life for your laptop.

https://devblogs.microsoft.com/oldnewthing/20090727-00/?p=17353
http://blogs.msdn.com/oldnewthing/pages/407234.aspx#631569

2/3

And generally speaking, polling should be avoided because it
carries negative consequences

for system performance.
So we’re basically asking, “Which is better, hammering with a

screwdriver
or hammering with pliers?”

But let’s say for the sake of argument that this “back off periodically”
polling loop is actually

the right design, and the only argument is
which of the above two methods is “better” in

terms of the criteria
listed above (handles, thread time).

It still doesn’t matter.

Method A has one fewer handle, but one more flag.
So the total number of things you have to

keep track of is the same
either way.

“Oh, but I save the overhead of an additional handle.”

Dude, you’re already burning a thread.
A single handle to an event is noise compared to the

cost of a thread.

“But I save the cost of validating the handle and following the
reference to the underlying

kernel object.”

Dude, you’re about to go to sleep for 50 milliseconds.
Saving a few thousand clocks is noise

compared to 50 milliseconds.

The flag method does have some other problems, none of which are
deal-breaking, but are

things to bear in mind.

First, that flag that you’re checking.
There’s no synchronization on that variable, so the

background thread
may run a smidge longer than necessary because the change hasn’t
yet

propagated to the CPU running the loop.
Similarly,
the sleep loop does take a little longer to

notice that it should
stop working.
If the fKeepGoing flag is set to FALSE
during the sleep,

the sleep will still run to completion before the loop finds out.

In the grand scheme of things, however, the extra 50 to 100 milliseconds
are probably not a

big deal.
The background thread is a little slow to shut down,
that’s all.
The user will probably

not even notice that the CPU meter was higher
than normal for an additional tenth of a

second.
After all, the typical human reaction time is 100 milliseconds anyway.

I’m assuming that the code that signals the background thread doesn’t
sit around waiting for

the background thread to clean up.
If it does, then this 100ms delay may start to combine

with other
delays to turn into something the user may start to notice.
A tenth of a second

here, a tenth of a second there, soon you may
find yourself accumulating a half second’s

delay, and that’s a delay
the human brain can perceive.

http://blogs.msdn.com/oldnewthing/archive/2006/01/24/516808.aspx

3/3

