
1/2

July 20, 2009

Why was MoveTo replaced with MoveToEx?
devblogs.microsoft.com/oldnewthing/20090720-00

Raymond Chen

Commenter Ulric asks,
“Where did MoveTo(HDC, int, int) go?”

Back in the 16-bit days, the function to move the current point
was called MoveTo ,
and its

return value was a DWORD which encoded the
previous position,
packing two 16-bit

coordinates into a single 32-bit value.
As part of the transition to 32-bit Windows,
GDI

switched to using 32-bit coordinates instead of the
wimpy 16-bit coordinates of old.
As a

result, it was no longer possible to encode the original
position in a single DWORD .

Something new had to be developed.

That new thing was the MoveToEx function.
Instead of returning a single DWORD ,
it

accepted a final parameter which
received the previous coordinates.
If you didn’t care about

the previous coordinates,
you could just pass NULL .
All of the GDI functions which used to

pack two 16-bit coordinates
into a single DWORD
got Ex -ified in this way so they could

accommodate
the new 32-bit coordinate system.

But why did the old MoveTo function go away?
Why not keep it around for source code

compatibility?

I find this an interesting question,
since most people seem to think that maintaining source

code
compability between the 32-bit and 64-bit versions of Windows
was an idea whose

stupidity
rivals
prosecuting a land war in Asia.
(If we had followed this advice,
people would

just be asking,
why did you replace WinExec with the much harder-to-use
CreateProcess?)

By the same logic, source code compatibility between 16-bit and 32-bit
Windows is equally

absurd.
According to these people,
porting 16-bit code to
to 32-bit Windows is the best time

to introduce
these sorts of incompatibilities,
in order to force people to rewrite their

programs.

Anyway, the reason we lost MoveTo was that there
was no way to return 64 bits of

information in a 32-bit integer.
Now it's true that in many cases, the caller doesn't actually

care
about the previous position,
but of course the MoveTo function doesn't know that.
It

returns a value; it doesn't know whether the caller is going to
use that return value or not.

https://devblogs.microsoft.com/oldnewthing/20090720-00/?p=17433
http://blogs.msdn.com/oldnewthing/pages/407234.aspx#619634
http://blogs.msdn.com/oldnewthing/archive/2005/01/31/363790.aspx
http://blogs.msdn.com/oldnewthing/archive/2008/12/08/9182990.aspx#9191060

2/2

I guess one way out would have been to change the return value of
 MoveTo to void .
That

way, people who didn't care about the return value would still
compile, while people who did

try to use the return value
would get a compile error and have to switch to MoveToEx .

Yeah, I guess that could've been done,
but you could also have done that yourself:

#define MoveTo(hdc, x, y) ((void)MoveToEx(hdc, x, y, NULL))

I find it interesting that most people who write their own
 MoveTo macro don't use the

(void) cast.
In most cases, this is a mistake in porting from 16-bit Windows.
(I can tell

because the macro is mixed in with a bunch of other
porting macros.)
However, in other

cases, it could be intentional.
The authors of the macro may simply not have known about the

old
16-bit days and simply expected their macro to be used as if it
were prototyped as
 BOOL

MoveTo(HDC, int, int) .

These people will probably be baffled if they run across any
actual 16-bit Windows code that

tried to extract the high word
from the return value of MoveTo .
"Why are you extracting the

high word from a BOOL ?"

Historical exercise:
Instead of adding a new parameter, why not just make
 MoveToEx

return an __int64 ?

