
1/3

July 16, 2009

Separating the metadata from the DIB pixels: Changing
the raster operation

devblogs.microsoft.com/oldnewthing/20090716-00

Raymond Chen

For a few days now, we’ve
used the SetDIBitsToDevice function
in conjunction with a

precomputed BITMAPINFO
to draw a DIB with an alternate color table
without modifying the

HBITMAP .

The SetDIBitsToDevice function operates like
a BitBlt with raster operation

SRCCOPY .
If you want another raster operation, you can use
 StretchDIBits , which has a

final raster operation parameter.
Despite its name, you don’t have to stretch with

StretchDIBits .
Just pass a source and destination of equal size, and you’ve performed
a

NOP stretch, but you get the benefit of the raster operation.

void

PaintContent(HWND hwnd, PAINTSTRUCT *pps)

{

if (g_pvBits) {

 StretchDIBits(pps->hdc, 0, 0,

 g_bmiGray.bmiHeader.biWidth,

 g_bmiGray.bmiHeader.biHeight, 0, 0,

 g_bmiGray.bmiHeader.biWidth,

 g_bmiGray.bmiHeader.biHeight,

 g_pvBits,

 (BITMAPINFO*)&g_bmiGray, DIB_RGB_COLORS,

 NOTSRCCOPY);

}
}

I changed the call from SetDIBitsToDevice
to StretchDIBits ,
setting the source and

destination rectangles to the same size
(so no actual stretching occurs),
and specifying a

raster operation of NOTSRCCOPY
so the result on screen is a negative grayscale.

Some people may object to performing a stretch operation
and requesting no stretching, but

that’s perfectly fine.
At least in this case, GDI is not stupid.
If you ask it to perform a stretch

operation
but pass parameters that don’t do any stretching, it will
optimize this to a non-

stretching operation.
You don’t need to hand-optimize it.
Instead of writing

https://devblogs.microsoft.com/oldnewthing/20090716-00/?p=17463
http://blogs.msdn.com/oldnewthing/archive/2009/07/14/9832544.aspx

2/3

if (cxSrc == cxDst && cySrc == cyDst) {

BitBlt(hdc, xDst, yDst, cxDst, cyDst,

 hdcSrc, xSrc, ySrc, dwRop);

} else {

StretchBlt(hdc, xDst, yDst, cxDst, cyDst,

 hdcSrc, xSrc, ySrc, cxSrc, cySrc, dwRop);

}

… just go straight to the StretchBlt :

StretchBlt(hdc, xDst, yDst, cxDst, cyDst,

 hdcSrc, xSrc, ySrc, cxSrc, cySrc, dwRop);

The StretchBlt function will convert the
operation to a BitBlt if cxSrc == cxDst
and

cySrc == cyDst .
You don’t have to hand-optimize it.
The GDI folks hand-optimized it for

you.

(In fact, for a long time,
the SetDIBitsToDevice function simply called
 StretchDIBits ,

saying that the input and
output rectangles were the same size,
and StretchDIBits

detected the absence of stretching
and used an optimized code path.
Consequently,

“optimizating” the code by calling
 SetDIBitsToDevice
was actually a pessimization.)

Back to StretchDIBits .
So far, we’ve been drawing the entire bitmap at the upper left

corner of the destination device context.
The last remaining feature of BitBlt is
the ability

to draw a rectangular chunk of a source bitmap
at a destination location,
so let’s do that.

We’ll draw the bottom right corner of the bitmap in
the bottom right corner of the window,

with negative colors,
and just to show we can, we’ll also stretch it.

void

PaintContent(HWND hwnd, PAINTSTRUCT *pps)

{

if (g_pvBits) {

 RECT rc;

 GetClientRect(hwnd, &rc);

 int cxChunk = g_bmiGray.bmiHeader.biWidth / 2;

 int cyChunk = g_bmiGray.bmiHeader.biHeight / 2;

 StretchDIBits(pps->hdc, rc.right - cxChunk * 2,

 rc.bottom - cxChunk * 2,

 cxChunk * 2, cyChunk * 2,

 g_bmiGray.bmiHeader.biWidth - cxChunk,

 g_bmiGray.bmiHeader.biHeight - cyChunk,

 cxChunk, cyChunk,

 g_pvBits, (BITMAPINFO*)&g_bmiGray,

 DIB_RGB_COLORS, NOTSRCCOPY);

}
}

3/3

So far, we’ve been operating on DIB pixels that are
held inside a DIB section.
But there’s no

requirement that the bits passed to
 StretchDIBits come from an actual DIB section.
We’ll

look at the total disembodiment of DIBs next time,
as well as looking at some unexpected

consequences of all our game-playing.

