
1/3

July 15, 2009

Separating the metadata from the DIB pixels:
Precalculating the BITMAPINFO

devblogs.microsoft.com/oldnewthing/20090715-00

Raymond Chen

Last time, we saw
that you can use the SetDIBitsToDevice function
to draw a DIB with an

alternate color table without having
to modify the HBITMAP.
In that version of the function,

we selected the HBITMAP
into a device context in preparation for drawing from it,
but in fact

that step isn’t necessary for drawing.
It was merely necessary to get the original color table
so

we could build our grayscale color table.
If you don’t care what the original colors are,
then

you can skip that step.
And even if you care what the old colors are,
and if you assume that

the colors don’t change,
then you only need to ask once.

To demonstrate, that
all the work of building the BITMAPINFO
structure could have been

done ahead of time,
let’s use this alternate version of our program:

https://devblogs.microsoft.com/oldnewthing/20090715-00/?p=17483
http://blogs.msdn.com/oldnewthing/archive/2009/07/14/9832544.aspx

2/3

HBITMAP g_hbm;

struct BITMAPINFO256 {

BITMAPINFOHEADER bmiHeader;

 RGBQUAD bmiColors[256];

} g_bmiGray;

void *g_pvBits;

BOOL

OnCreate(HWND hwnd, LPCREATESTRUCT lpcs)

{

// change path as appropriate

g_hbm = (HBITMAP)LoadImage(g_hinst,

 TEXT("C:\\Windows\\Gone Fishing.bmp"),

 IMAGE_BITMAP, 0, 0,

 LR_CREATEDIBSECTION | LR_LOADFROMFILE);

if (g_hbm) {

 BITMAP bm;

 if (GetObject(g_hbm, sizeof(bm), &bm) == sizeof(bm) &&

 bm.bmBits != NULL &&

 bm.bmPlanes * bm.bmBitsPixel <= 8) {

 ZeroMemory(&g_bmiGray, sizeof(g_bmiGray));

 HDC hdc = CreateCompatibleDC(NULL);

 if (hdc) {

 HBITMAP hbmPrev = SelectBitmap(hdc, g_hbm);

 UINT cColors = GetDIBColorTable(hdc, 0, 256, g_bmiGray.bmiColors);

 for (UINT iColor = 0; iColor < cColors; iColor++) {

 BYTE b = (BYTE)((30 * g_bmiGray.bmiColors[iColor].rgbRed +

 59 * g_bmiGray.bmiColors[iColor].rgbGreen +

 11 * g_bmiGray.bmiColors[iColor].rgbBlue) / 100);

 g_bmiGray.bmiColors[iColor].rgbRed = b;

 g_bmiGray.bmiColors[iColor].rgbGreen = b;

 g_bmiGray.bmiColors[iColor].rgbBlue = b;

 }

 g_bmiGray.bmiHeader.biSize = sizeof(g_bmiGray.bmiHeader);

 g_bmiGray.bmiHeader.biWidth = bm.bmWidth;

 g_bmiGray.bmiHeader.biHeight = bm.bmHeight;

 g_bmiGray.bmiHeader.biPlanes = bm.bmPlanes;

 g_bmiGray.bmiHeader.biBitCount = bm.bmBitsPixel;

 g_bmiGray.bmiHeader.biCompression = BI_RGB;

 g_bmiGray.bmiHeader.biClrUsed = cColors;

 g_pvBits = bm.bmBits;

 DeleteDC(hdc);

 }

}
return TRUE;

}

void

PaintContent(HWND hwnd, PAINTSTRUCT *pps)

{

if (g_pvBits) {

 SetDIBitsToDevice(pps->hdc, 0, 0,

 g_bmiGray.bmiHeader.biWidth,

 g_bmiGray.bmiHeader.biHeight, 0, 0,

3/3

 0, g_bmiGray.bmiHeader.biHeight,

 g_pvBits,

 (BITMAPINFO*)&g_bmiGray, DIB_RGB_COLORS);

}
}

I moved the blue code from PaintContent
to OnCreate to demonstrate that pretty much

all
of the work we used to do in PaintContent
could have been done ahead of time.
The

only other thing we had to do was save the pointer to the bits
so we could pass them to

SetDIBitsToDevice .
(Of course, that pointer becomes invalid once the controlling

HBITMAP is destroyed, so be careful!
In practice, you probably would be better off calling

GetObject immediately before drawing
to protect against the case that somebody deleted

the bitmap
out from under you.)

Next time,
we’ll look at another operation we can perform
when we have a BITMAPINFO and

a collection of pixels.

(Note that there are issues with this technique
which will be taken up on Friday.)

