
1/3

July 14, 2009

The fun and profit of manipulating the DIB color table can
be done without having to modify it

devblogs.microsoft.com/oldnewthing/20090714-00

Raymond Chen

If I were
Michael Kaplan,
I’d have a more clever title like
I’m not touching you!
or Look but

don’t touch
or maybe Looking at a DIB through BITMAPINFO -colored
glasses.

We saw
some time ago
that you can manipulate the DIB color table to perform wholesale

color
remapping.
But in fact you can do this even without modifying the DIB color table,

which is a handy trick if you want to do color remapping but you
don’t want to change the

bitmap itself.
For example,
the bitmap is not one that is under your control
(so you shouldn’t

be modifying it),
or the bitmap might be in use on multiple threads
(so modifying it will

result in race conditions).

Let’s demonstrate this technique by converting the “Gone Fishing” bitmap
to grayscale, but

doing so without actually modifying the bitmap.
As always, we start with our
scratch program

and make the following changes:

https://devblogs.microsoft.com/oldnewthing/20090714-00/?p=17503
http://blogs.msdn.com/michkap/
http://blogs.msdn.com/oldnewthing/archive/2006/11/15/1081320.aspx
http://blogs.msdn.com/oldnewthing/archive/2003/07/23/54576.aspx

2/3

HBITMAP g_hbm;

BOOL

OnCreate(HWND hwnd, LPCREATESTRUCT lpcs)

{

// change path as appropriate

g_hbm = (HBITMAP)LoadImage(g_hinst,

 TEXT("C:\\Windows\\Gone Fishing.bmp"),

 IMAGE_BITMAP, 0, 0,

 LR_CREATEDIBSECTION | LR_LOADFROMFILE);

return TRUE;

}

void

OnDestroy(HWND hwnd)

{

if (g_hbm) DeleteObject(g_hbm);

PostQuitMessage(0);

}

void

PaintContent(HWND hwnd, PAINTSTRUCT *pps)

{

if (g_hbm) {

 BITMAP bm;

 if (GetObject(g_hbm, sizeof(bm), &bm) == sizeof(bm) &&

 bm.bmBits != NULL &&

 bm.bmPlanes * bm.bmBitsPixel <= 8) {

 struct BITMAPINFO256 {

 BITMAPINFOHEADER bmiHeader;

 RGBQUAD bmiColors[256];

 } bmiGray;

 ZeroMemory(&bmiGray, sizeof(bmiGray));

 HDC hdc = CreateCompatibleDC(NULL);

 if (hdc) {

 HBITMAP hbmPrev = SelectBitmap(hdc, g_hbm);

 UINT cColors = GetDIBColorTable(hdc, 0, 256, bmiGray.bmiColors);

 for (UINT iColor = 0; iColor < cColors; iColor++) {

 BYTE b = (BYTE)((30 * bmiGray.bmiColors[iColor].rgbRed +

 59 * bmiGray.bmiColors[iColor].rgbGreen +

 11 * bmiGray.bmiColors[iColor].rgbBlue) / 100);

 bmiGray.bmiColors[iColor].rgbRed = b;

 bmiGray.bmiColors[iColor].rgbGreen = b;

 bmiGray.bmiColors[iColor].rgbBlue = b;

 }

 bmiGray.bmiHeader.biSize = sizeof(bmiGray.bmiHeader);

 bmiGray.bmiHeader.biWidth = bm.bmWidth;

 bmiGray.bmiHeader.biHeight = bm.bmHeight;

 bmiGray.bmiHeader.biPlanes = bm.bmPlanes;

 bmiGray.bmiHeader.biBitCount = bm.bmBitsPixel;

 bmiGray.bmiHeader.biCompression = BI_RGB;

 bmiGray.bmiHeader.biClrUsed = cColors;

 SetDIBitsToDevice(pps->hdc, 0, 0,

 bmiGray.bmiHeader.biWidth,

http://blogs.msdn.com/oldnewthing/archive/2004/12/01/273018.aspx
http://blogs.msdn.com/oldnewthing/archive/2005/06/28/433341.aspx
http://en.wikipedia.org/wiki/Grayscale#Converting_color_to_grayscale
http://en.wikipedia.org/wiki/Grayscale#Converting_color_to_grayscale
http://en.wikipedia.org/wiki/Grayscale#Converting_color_to_grayscale

3/3

 bmiGray.bmiHeader.biHeight, 0, 0,

 0, bmiGray.bmiHeader.biHeight,

 bm.bmBits,

 (BITMAPINFO*)&bmiGray, DIB_RGB_COLORS);

 BitBlt(pps->hdc, bm.bmWidth, 0, bm.bmWidth, bm.bmHeight,

 hdc, 0, 0, SRCCOPY);

 SelectBitmap(hdc, hbmPrev);

 DeleteDC(hdc);

 }

 }

}
}

Things start off innocently enough, loading the bitmap into a
DIB section for use during

painting.

We do our work at paint time.
First, we confirm
that we indeed have a DIB section and that it

is 8bpp or lower,
because bitmaps at higher than 8bpp do not use color tables.

We then select the bitmap into a DC so we can call
 GetDIBColorTable to get its current

color table.
(This is the only step that
requires the bitmap to be selected into a device

context.)
We then edit the color table to convert each color to
its grayscale equivalent.

Finally, we fill in the BITMAPINFO structure
with the description of the bitmap bits,
and

then we call SetDIBitsToDevice to send
the pixels to the destination DC.

Just for good measure, we also BitBlt the
original unmodified bitmap,
to prove that the

original bitmap is intact and unchanged.

This mini-program is really just a stepping stone to other
things you can do with this

technique of separating the
metadata (the BITMAPINFO) from the pixels.
We’ll continue our

investigations tomorrow.

(Before you all run out and use this technique everywhere you can imagine,
wait for the

remarks in Friday’s installment.)

