
1/3

June 18, 2009

The dangers of mixing synchronous and asynchronous
state

devblogs.microsoft.com/oldnewthing/20090618-00

Raymond Chen

The window manager distinguishes between synchronous state
(the state of the world based

on what messages your program
has received)
and asynchronous state (the actual state of the

world this very instant).
We saw this earlier when discussing
the difference between

GetKeyState and
GetAsyncKeyState.
Here are some other functions and their relationship

to the queue state:

Use synchronous state Use asynchronous state

GetActiveWindow GetForegroundWindow

GetMessagePos GetCursorPos

GetMessageTime GetTickCount

If you query the asynchronous state while processing a message,
you can find yourself caught

in a race condition,
because the synchronous state of the system when the message was

generated
may not match the asynchronous state of the system when you receive it.
For

example, if the users presses a key, and then moves the mouse,
calling GetCursorPos from

your keypress handler
will tell you were the cursor is right now,
which is not the same as

where the cursor was when the key was pressed.

Generally speaking, you should use the synchronous state during message
handling so that

you react to the state of the system at the time the
input event took place.
Reacting to the

asynchronous state of the system introduces race
conditions if there is a change to the system

state between the time
the message was generated and the time the message is processed.

Of the above functions, GetTickCount is the only one
I can think of that has a legitimate

usage pattern in common use,
namely, when creating timing loops.
But if you want to know

what time it was when
a key was pressed, then
 GetMessageTime is the function to use.

https://devblogs.microsoft.com/oldnewthing/20090618-00/?p=17843
http://blogs.msdn.com/oldnewthing/archive/2004/11/30/272262.aspx

2/3

This is all a rather length lead-in for my remarks regarding
a comment claiming that
there is

no practical reason why you can’t use
GetForegroundWindow to determine which window

was the one that had focus when a keyboard message was generated.
Well, actually, there is,

and it’s precisely the race condition
I’ve spent most of this article describing.
Suppose the

user presses a key
and then switches to another program.
Now your program gets around to

processing the keyboard input,
and you call GetForegroundWindow ,
and instead of getting

a window from your application,
you get some other window from another program.
You

then pass that window handle to TranslateAccelerator ,
the keyboard event matches an

entry in the accelerator,
and boom, you just sent a random WM_COMMAND message
to a

program that will interpret it to mean something completely
different.

Remember, just because your program has the line

#define IDC_REFRESH 814

doesn’t mean that another program can’t have the line

#define IDC_DELETEALL 814

Now the user presses F5 and switches from your program
to that other program.
Your

program processes the message, queries the asynchronous
foreground state with

GetForegroundWindow , and gets
that other program’s window back.
You then translate the

accelerator, and TranslateAccelerator
posts the WM_COMMAND(814) message to that

other program,
which interprets it as “delete all”.

The great thing about this is that the users will probably blame the
other program.

“Sometimes, when I use this program, it spontaneously deletes all my
items.
Stupid program.

It’s so buggy.”

Commenter poenits correctly points out that
I failed to take into account the case where the

message is posted
directly to the dialog.
(The dialog manager tries not to put keyboard focus

on the dialog itself,
but if you play weird games, you can find yourself backed into that

situation, such as if you delete all the controls on a dialog!)
The fix, however, is not to

translate the message directly to the
window with keyboard focus, because the window with

keyboard focus
might belong to a third dialog that you don’t want to translate
accelerators

for.
(That other window might have used the other header file which defines
message 814 to

be IDC_DELETEALL .)
Just check for your specific window directly:

if (hwnd1== msg.hwnd || IsChild(hwnd1, msg.hwnd))

 TranslateAccelerator(hwnd1, hAccel, &msg);

else if (hwnd2 == msg.hwnd || IsChild(hwnd2, msg.hwnd))

 TranslateAccelerator(hwnd2, hAccel, &msg);

http://blogs.msdn.com/oldnewthing/archive/2008/05/23/8535427.aspx#8550623
http://blogs.msdn.com/oldnewthing/archive/2008/05/23/8535427.aspx#8545605

3/3

Think of TranslateAccelerator as
 MaybePostWM_COMMAND .
The first parameter to

TranslateAccelerator must
be a window you are certain knows how to
interpret the

WM_COMMAND message that you might
end up posting.
You know which windows understand

your custom WM_COMMAND
messages.
Pass one of those known windows, not some random

unknown window that
you calculated from unknown sources.

Passing an unknown window as the first parameter to
 TranslateAccelerator
is like

falling for one of those phishing scams.
If you get a random piece of email telling you “Hey,

call this
number and give me your personal information,”
you’re not going to do it.
If you

really want to contact your bank,
you ignore the phone number in the email
and just call the

number you know and trust to be your bank’s
service desk.
Similarly, you shouldn’t be

posting your personal messages to some random window you receive.
Post it to the known

trusted window.
Otherwise you’re just sending your money
to some unknown recipient in

Nigeria.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

